High-throughput discovery of genetic determinants of circadian misalignment
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
MC_U142684171
Medical Research Council - United Kingdom
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006370
NHGRI NIH HHS - United States
UM1 OD023221
NIH HHS - United States
PubMed
31929527
PubMed Central
PMC6980734
DOI
10.1371/journal.pgen.1008577
PII: PGENETICS-D-19-01158
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní rytmus genetika MeSH
- komplexy ubikvitinligas genetika MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteiny vázající telomery genetika MeSH
- receptory oxytocinu genetika MeSH
- represorové proteiny genetika MeSH
- serinové endopeptidasy genetika MeSH
- strojové učení MeSH
- transportní systém aminokyselin y+ genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- komplexy ubikvitinligas MeSH
- OXTR protein, mouse MeSH Prohlížeč
- proteiny vázající telomery MeSH
- receptory oxytocinu MeSH
- represorové proteiny MeSH
- serinové endopeptidasy MeSH
- Slc7a11 protein, mouse MeSH Prohlížeč
- Spop protein, mouse MeSH Prohlížeč
- transportní systém aminokyselin y+ MeSH
Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
CELPHEDIA PHENOMIN Institut Clinique de la Souris Illkirch France
European Molecular Biology Laboratory European Bioinformatics Institute Hinxton United Kingdom
German Center for Diabetes Research Neuherberg Germany
Medical Research Council Harwell Institute Harwell United Kingdom
National Laboratory Animal Center National Applied Research Laboratories Taipei Taiwan
RIKEN BioResource Center Tsukuba Japan
School of Medicine and Dentistry Queen Mary University of London London United Kingdom
The Centre for Phenogenomics Toronto Canada
The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton United Kingdom
Zobrazit více v PubMed
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18: 164–179. 10.1038/nrg.2016.150 PubMed DOI PMC
Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72: 551–577. 10.1146/annurev-physiol-021909-135919 PubMed DOI PMC
Roenneberg T, Merrow M (2016) The Circadian Clock and Human Health. Curr Biol 26: R432–443. 10.1016/j.cub.2016.04.011 PubMed DOI
Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113: E1402–1411. 10.1073/pnas.1516953113 PubMed DOI PMC
Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81. 10.1038/nature01761 PubMed DOI PMC
Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301: 525–527. 10.1126/science.1086179 PubMed DOI
Harmar AJ, Marston HM, Shen S, Spratt C, West KM, et al. (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109: 497–508. 10.1016/s0092-8674(02)00736-5 PubMed DOI
Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8: 476–483. 10.1038/nn1419 PubMed DOI PMC
Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, et al. (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85–90. 10.1126/science.1238599 PubMed DOI
Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, et al. (1999) Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 5: 1062–1065. 10.1038/12502 PubMed DOI
Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040–1043. 10.1126/science.1057499 PubMed DOI
Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, et al. (2017) Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 169: 203–215 e213. 10.1016/j.cell.2017.03.027 PubMed DOI PMC
Hirano A, Shi G, Jones CR, Lipzen A, Pennacchio LA, et al. (2016) A Cryptochrome 2 mutation yields advanced sleep phase in humans. Elife 5. PubMed PMC
Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640–644. 10.1038/nature03453 PubMed DOI
Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, et al. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128: 59–70. 10.1016/j.cell.2006.11.043 PubMed DOI PMC
Liu Z, Huang M, Wu X, Shi G, Xing L, et al. (2014) PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep 7: 1509–1520. 10.1016/j.celrep.2014.04.032 PubMed DOI
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, et al. (2019) Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 177: 896–909 e820. 10.1016/j.cell.2019.02.017 PubMed DOI PMC
Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, et al. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344–2347. 10.1126/science.289.5488.2344 PubMed DOI
Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26: 567–580. 10.1101/gad.183251.111 PubMed DOI PMC
Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330: 379–385. 10.1126/science.1195262 PubMed DOI PMC
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291: 490–493. 10.1126/science.291.5503.490 PubMed DOI
Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90: 1063–1102. 10.1152/physrev.00009.2009 PubMed DOI
de Angelis MH, Nicholson G, Selloum M, White JK, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics (vol 47, pg 969, 2015). Nature Genetics 47. PubMed PMC
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, et al. (2016) High-throughput discovery of novel developmental phenotypes. Nature 537: 508–514. 10.1038/nature19356 PubMed DOI PMC
Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10: 371–380. 10.1038/nrg2578 PubMed DOI
Helfrich-Forster C (2009) Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythms 24: 259–270. 10.1177/0748730409339614 PubMed DOI
Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104: 7664–7669. 10.1073/pnas.0607713104 PubMed DOI PMC
Myles PS, Cui J (2007) Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth 99: 309–311. 10.1093/bja/aem214 PubMed DOI
Qu Z, Zhang H, Huang M, Shi G, Liu Z, et al. (2016) Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. Elife 5. PubMed PMC
Shi G, Xing L, Liu Z, Qu Z, Wu X, et al. (2013) Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A 110: 4750–4755. 10.1073/pnas.1302560110 PubMed DOI PMC
Sawilowsky SS (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8: 467–474.
de Angelis MH, Nicholson G, Selloum M, White J, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet 47: 969–978. 10.1038/ng.3360 PubMed DOI PMC
Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, et al. (2016) Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 7: 12444 10.1038/ncomms12444 PubMed DOI PMC
Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337–342. 10.1038/nature10163 PubMed DOI PMC
Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 9. PubMed PMC
Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, et al. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525–536. 10.1016/s0896-6273(01)00302-6 PubMed DOI
Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009–1017. 10.1016/s0092-8674(00)00205-1 PubMed DOI PMC
Karatsoreos IN, Romeo RD, Mcewen BS, Rae S (2010) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience 23: 1047–1053. PubMed PMC
Aida R, Moriya T, Araki M, Akiyama M, Wada K, et al. (2002) Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice. Molecular pharmacology 61: 26–34. 10.1124/mol.61.1.26 PubMed DOI
Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, et al. (2018) Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 99: 555–563 e555. 10.1016/j.neuron.2018.06.029 PubMed DOI PMC
Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, et al. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405–410. 10.1038/417405a PubMed DOI
Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272: 5703–5709. 10.1111/j.1742-4658.2005.04984.x PubMed DOI PMC
Hatori M, Gill S, Mure LS, Goulding M, O'Leary DD, et al. (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3: e03357 10.7554/eLife.03357 PubMed DOI PMC
Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8: 790–802. 10.1038/nrn2215 PubMed DOI
McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7: e32091 10.1371/journal.pone.0032091 PubMed DOI PMC
Kurien P, Hsu PK, Leon J, Wu D, McMahon T, et al. (2019) TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A 116: 12045–12053. 10.1073/pnas.1819110116 PubMed DOI PMC
Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, et al. (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. 3: 320–324. PubMed PMC
Wang X, Tang J, Xing L, Shi G, Ruan H, et al. (2010) Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J 29: 1389–1400. 10.1038/emboj.2010.34 PubMed DOI PMC