High-throughput discovery of genetic determinants of circadian misalignment

. 2020 Jan ; 16 (1) : e1008577. [epub] 20200113

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31929527

Grantová podpora
MC_U142684171 Medical Research Council - United Kingdom
MC_U142684172 Medical Research Council - United Kingdom
UM1 HG006370 NHGRI NIH HHS - United States
UM1 OD023221 NIH HHS - United States

Odkazy

PubMed 31929527
PubMed Central PMC6980734
DOI 10.1371/journal.pgen.1008577
PII: PGENETICS-D-19-01158
Knihovny.cz E-zdroje

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.

Cambridge Suda Genomic Resource Center Jiangsu Key Laboratory of Neuropsychiatric Diseases Medical college of Soochow University Suzhou Jiangsu China

CELPHEDIA PHENOMIN Institut Clinique de la Souris Illkirch France

College of Veterinary Medicine Seoul National University and Korea Mouse Phenotyping Center Seoul Republic of Korea

Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology Soochow University Suzhou China

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czech Republic

Department of Physiology University of Texas Southwestern Medical Center Dallas Texas United States of America

European Molecular Biology Laboratory European Bioinformatics Institute Hinxton United Kingdom

German Center for Diabetes Research Neuherberg Germany

German Mouse Clinic Institute of Experimental Genetics Helmholtz Zentrum München German Research Center for Environmental Health Munich Germany

Medical Research Council Harwell Institute Harwell United Kingdom

National Laboratory Animal Center National Applied Research Laboratories Taipei Taiwan

RIKEN BioResource Center Tsukuba Japan

School of Medicine and Dentistry Queen Mary University of London London United Kingdom

School of Medicine and Mouse Biology Program University of California Davis California United States of America

SKL of Pharmaceutical Biotechnology and Model Animal Research Center Collaborative Innovation Center for Genetics and Development Nanjing Biomedical Research Institute Nanjing University Nanjing China

State Key Laboratory of Radiation Medicine and Prevention Medical college of Soochow University Suzhou China

The Centre for Phenogenomics Toronto Canada

The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton United Kingdom

Zobrazit více v PubMed

Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18: 164–179. 10.1038/nrg.2016.150 PubMed DOI PMC

Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72: 551–577. 10.1146/annurev-physiol-021909-135919 PubMed DOI PMC

Roenneberg T, Merrow M (2016) The Circadian Clock and Human Health. Curr Biol 26: R432–443. 10.1016/j.cub.2016.04.011 PubMed DOI

Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113: E1402–1411. 10.1073/pnas.1516953113 PubMed DOI PMC

Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81. 10.1038/nature01761 PubMed DOI PMC

Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301: 525–527. 10.1126/science.1086179 PubMed DOI

Harmar AJ, Marston HM, Shen S, Spratt C, West KM, et al. (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109: 497–508. 10.1016/s0092-8674(02)00736-5 PubMed DOI

Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8: 476–483. 10.1038/nn1419 PubMed DOI PMC

Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, et al. (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85–90. 10.1126/science.1238599 PubMed DOI

Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, et al. (1999) Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 5: 1062–1065. 10.1038/12502 PubMed DOI

Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040–1043. 10.1126/science.1057499 PubMed DOI

Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, et al. (2017) Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 169: 203–215 e213. 10.1016/j.cell.2017.03.027 PubMed DOI PMC

Hirano A, Shi G, Jones CR, Lipzen A, Pennacchio LA, et al. (2016) A Cryptochrome 2 mutation yields advanced sleep phase in humans. Elife 5. PubMed PMC

Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640–644. 10.1038/nature03453 PubMed DOI

Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, et al. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128: 59–70. 10.1016/j.cell.2006.11.043 PubMed DOI PMC

Liu Z, Huang M, Wu X, Shi G, Xing L, et al. (2014) PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep 7: 1509–1520. 10.1016/j.celrep.2014.04.032 PubMed DOI

Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, et al. (2019) Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 177: 896–909 e820. 10.1016/j.cell.2019.02.017 PubMed DOI PMC

Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, et al. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344–2347. 10.1126/science.289.5488.2344 PubMed DOI

Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26: 567–580. 10.1101/gad.183251.111 PubMed DOI PMC

Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330: 379–385. 10.1126/science.1195262 PubMed DOI PMC

Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291: 490–493. 10.1126/science.291.5503.490 PubMed DOI

Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90: 1063–1102. 10.1152/physrev.00009.2009 PubMed DOI

de Angelis MH, Nicholson G, Selloum M, White JK, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics (vol 47, pg 969, 2015). Nature Genetics 47. PubMed PMC

Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, et al. (2016) High-throughput discovery of novel developmental phenotypes. Nature 537: 508–514. 10.1038/nature19356 PubMed DOI PMC

Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10: 371–380. 10.1038/nrg2578 PubMed DOI

Helfrich-Forster C (2009) Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythms 24: 259–270. 10.1177/0748730409339614 PubMed DOI

Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104: 7664–7669. 10.1073/pnas.0607713104 PubMed DOI PMC

Myles PS, Cui J (2007) Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth 99: 309–311. 10.1093/bja/aem214 PubMed DOI

Qu Z, Zhang H, Huang M, Shi G, Liu Z, et al. (2016) Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. Elife 5. PubMed PMC

Shi G, Xing L, Liu Z, Qu Z, Wu X, et al. (2013) Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A 110: 4750–4755. 10.1073/pnas.1302560110 PubMed DOI PMC

Sawilowsky SS (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8: 467–474.

de Angelis MH, Nicholson G, Selloum M, White J, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet 47: 969–978. 10.1038/ng.3360 PubMed DOI PMC

Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, et al. (2016) Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 7: 12444 10.1038/ncomms12444 PubMed DOI PMC

Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337–342. 10.1038/nature10163 PubMed DOI PMC

Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 9. PubMed PMC

Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, et al. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525–536. 10.1016/s0896-6273(01)00302-6 PubMed DOI

Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009–1017. 10.1016/s0092-8674(00)00205-1 PubMed DOI PMC

Karatsoreos IN, Romeo RD, Mcewen BS, Rae S (2010) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience 23: 1047–1053. PubMed PMC

Aida R, Moriya T, Araki M, Akiyama M, Wada K, et al. (2002) Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice. Molecular pharmacology 61: 26–34. 10.1124/mol.61.1.26 PubMed DOI

Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, et al. (2018) Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 99: 555–563 e555. 10.1016/j.neuron.2018.06.029 PubMed DOI PMC

Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, et al. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405–410. 10.1038/417405a PubMed DOI

Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272: 5703–5709. 10.1111/j.1742-4658.2005.04984.x PubMed DOI PMC

Hatori M, Gill S, Mure LS, Goulding M, O'Leary DD, et al. (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3: e03357 10.7554/eLife.03357 PubMed DOI PMC

Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8: 790–802. 10.1038/nrn2215 PubMed DOI

McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7: e32091 10.1371/journal.pone.0032091 PubMed DOI PMC

Kurien P, Hsu PK, Leon J, Wu D, McMahon T, et al. (2019) TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A 116: 12045–12053. 10.1073/pnas.1819110116 PubMed DOI PMC

Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, et al. (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. 3: 320–324. PubMed PMC

Wang X, Tang J, Xing L, Shi G, Ruan H, et al. (2010) Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J 29: 1389–1400. 10.1038/emboj.2010.34 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...