Surface Magnetostriction of FeCoB Amorphous Ribbons Analyzed Using Magneto-Optical Kerr Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
2019/26
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_049/0008407
European Regional Development Fund
2014/236
scientific researchers of higher education institutions within the State Task of the Russian Federation
PubMed
31936024
PubMed Central
PMC7013839
DOI
10.3390/ma13020257
PII: ma13020257
Knihovny.cz E-zdroje
- Klíčová slova
- domain imaging, finite element method, magneto-elastic effect, magneto-optical Kerr microscopy, surface magneostrictive coefficient,
- Publikační typ
- časopisecké články MeSH
Surface sensitive magneto-optical Kerr microscopy completed with the special self-made sample holder is used for studying the magneto-elastic behaviour in the surface of the as-quenched amorphous Fe73Co12B15 alloy. The 10, 5, and 3 mm wide and approximately 34 μm thick ribbons were prepared by the conventional planar flow casting process. The experimental setup allows for a simultaneous application of an external magnetic field in the directions parallel and perpendicular to the ribbon axis and of compression stress from one side of the sample, resulting in tensile stress in opposite side. The distributions of tensile stresses in the measured surface were modelled by the finite element method. The observed changes of the magnetic domains and hysteresis loop anisotropy field under applied stress are evaluated using the Becker-Kersten method. This resulted in the determination of the local surface magnetostrictive coefficient from an area of about 200 μm in diameter. The obtained values ranged between 37-60 ppm and were well comparable with the bulk value presented in the literature.
Zobrazit více v PubMed
Du Trémolet de Lacheisserie E., Gignoux D., Schlenker M., editors. Magnetism: Fundamentals. Springer; New York, NY, USA: 2005.
Inoue A., Hashimoto K., editors. Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications. Springer; Berlin, Germany: 2001.
Del Moral A. Magnetostriction—Basic Principles and Materials. Taylor & Francis; Boca Raton, FL, USA: 2009.
Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. Magnetoelectric Composites. Pan Stanford Publishing Pte. Ltd.; New York, NY, USA: 2019.
Parkes D.E., Shelford L.R., Wadley P., Holý V., Wang M., Hindmarch A.T., Van der Laan G., Campion R.P., Edmonds K.W., Cavill S.A., et al. Magnetostrictive thin films for microwave spintronics. Sci. Rep. 2013;3:2220. doi: 10.1038/srep02220. PubMed DOI PMC
O´Dell T.H. Magnetostriction Measurements on Amorphous Ribbons by the Becker-Kersten Method. Phys. Stat. Solidi (A) 1981;68:221–226. doi: 10.1002/pssa.2210680129. DOI
Kraus L. A novel method for measurement of the saturation magnetostriction of amorphous ribbons. J. Phys. E Sci. Instrum. 1989;22:943. doi: 10.1088/0022-3735/22/11/009. DOI
Jirásková Y., Buršík J., Janičkovič D., Životský O. Influence of Preparation Technology on Microstructural and Magnetic Properties of Fe2MnSi and Fe2MnAl Heusler Alloys. Materials. 2019;12:710. doi: 10.3390/ma12050710. PubMed DOI PMC
Li N., Zhang J., Xing W., Ouyang D., Liu L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 2018;143:285–296. doi: 10.1016/j.matdes.2018.01.061. DOI
Životský O., Hendrych A. Influence of Tensile Stress on the Surface Magneto-Optical Hysteresis Loops in Amorphous and (Nano) Crystalline Ribbons. IEEE Trans. Magn. 2014;50:2002804. doi: 10.1109/TMAG.2013.2286406. DOI
McCord J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015;48:333001. doi: 10.1088/0022-3727/48/33/333001. DOI
Hubert A., Schafer R. Magnetic Domains—The Analysis of Magnetic Microstructures. Springer; Berlin, Germany: 1998.
Životský O., Postava K., Kraus L., Hrabovská K., Hendrych A., Pištora J. Surface magnetic properties and domains observation in as-quenched and annealed FeNbB ribbons. J. Magn. Magn. Mater. 2010;322:1523–1526. doi: 10.1016/j.jmmm.2009.10.060. DOI
Zienkiewicz O. The Finite Element Method. McGraw-Hill; London, UK: 1977.
Bathe K.J. Finite Element Procedures. 1st ed. Prentice Hall; London, UK: 1996.
Marc 2016 Volume a Theory and User Information. [(accessed on 7 March 2019)]; 2016 SAS IP, USA. Available online: http://www.mscsoftware.com/product/marc.
Kiusalaas J. Numerical Methods in Engineering with Python. Cambridge University Press; New York, NY, USA: 2013.
Sato Turtelli R., Sinnecker J.P., Badurek G., Kussbach C., Allia P., Grössinger R. Stress dependence of magnetization processes: Reversals and relaxation in FexCo85-xB15 amorphous ribbons. Phys. Rev. B. 2001;63:094427. doi: 10.1103/PhysRevB.63.094427. DOI
Analysis of Magneto-Optical Hysteresis Loops of Amorphous and Surface-Crystalline Fe-Based Ribbons