Analysis of Magneto-Optical Hysteresis Loops of Amorphous and Surface-Crystalline Fe-Based Ribbons
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SP2020/45
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33396188
PubMed Central
PMC7796431
DOI
10.3390/ma14010141
PII: ma14010141
Knihovny.cz E-resources
- Keywords
- hysteresis loops, magnetic domains, magnetic force microscopy, magneto-optical Kerr microscopy, planar flow casting, ribbons, surface magnetism,
- Publication type
- Journal Article MeSH
Three Fe-based ribbon-type samples prepared by a conventional planar flow casting process are studied from the viewpoint of the amorphous Fe80Si4B16 and partially surface crystallized Fe80Si10B10, and Fe80.5Nb6.9B12.6, microstructures. Surface magnetic properties are investigated by magneto-optical Kerr microscopy, allowing the measurement of a local hysteresis loop from a selected area on the ribbon surface, and simultaneously, a domain structure corresponding to a definite point at the loop. For an amorphous sample, the changes in the slopes of hysteresis loops are related either to the size of the selected surface area, from which the loop is measured, or to the type, width, and movement of magnetic domains through this area. In the first case, the resizing of the area simulates an effect of changing the diameter of the incident laser beam on the magneto-optical properties of the ribbon. In the latter case, the observed wide-curved and fingerprint domains are responsible for markedly different shapes of the hysteresis loops at lower magnetic fields. If the surface is crystallized, the magnetic properties are more homogenous, showing typical one-jump magnetization reversal with less dependence on the size of the surface area. The magneto-optical experiments are completed by transmission electron microscopy and magnetic force microscopy.
See more in PubMed
Li F.C., Liu T., Zhang J.Y., Shuang S., Wang Q., Wang A.D., Wang J.G., Yang Y. Amorphous–nanocrystalline alloys: Fabrication, properties, and applications. Mater. Today Adv. 2019;4:100027. doi: 10.1016/j.mtadv.2019.100027. DOI
Mattson J., Theisen E., Steen P. Rapid solidification forming of glassy and crystalline ribbons by planar flow casting. Chem. Eng. Sci. 2018;192:1198–1208. doi: 10.1016/j.ces.2018.07.017. DOI
Cao C.C., Wang Y.G., Zhu L., Meng Y., Zhai X.B., Dai Y.D., Chen J.K., Pan F.M. Local structure, nucleation sites and crystallization behavior and their effects on magnetic properties of Fe81SixB10P8−xCu1 (x = 0~8) Sci. Rep. 2018;8:1243. doi: 10.1038/s41598-018-19665-8. PubMed DOI PMC
Dong W., Bai G., Yi S., Yan M. Effect of CO gas on surface profile and magnetic properties of Fe–Si–B amorphous ribbons. J. Mater. Sci. Mater. Electron. 2019;30:11843. doi: 10.1007/s10854-019-01523-6. DOI
Zhang J., Wan F., Li Y., Zheng J., Wang A., Song J., Tian M., He A., Chang C. Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons. J. Magn. Magn. Mater. 2017;438:126. doi: 10.1016/j.jmmm.2017.04.086. DOI
Mansourian S., Bakhshayeshi A., Taghavi mendi R. Giant magneto-impedance variation in amorphous CoFeSiB ribbons as a function of tensile stress and frequency. Phys. Lett. A. 2020;384:126657. doi: 10.1016/j.physleta.2020.126657. DOI
Gazda P., Szewczyk R. Novel Giant Magnetoimpedance Magnetic Field Sensor. Sensors. 2020;20:691. doi: 10.3390/s20030691. PubMed DOI PMC
Malátek M., Kraus L. Off-diagonal GMI sensor with stress-annealed amorphous ribbon. Sens. Actuators A Phys. 2010;164:41–45. doi: 10.1016/j.sna.2010.09.011. DOI
Beato-López J.J., Urdániz-Villanueva J.G., Pérez-Landazábal J.I., Gómez-Polo C. Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons. Materials. 2020;13:2175. doi: 10.3390/ma13092175. PubMed DOI PMC
Hrabovská K., Životský O., Rojíček J., Fusek M., Mareš V., Jirásková Y. Surface Magnetostriction of FeCoB Amorphous Ribbons Analyzed Using Magneto-Optical Kerr Microscopy. Materials. 2020;13:257. doi: 10.3390/ma13020257. PubMed DOI PMC
Schmidt D., Briley C., Schubert E., Schubert M. Vector magneto-optical generalized ellipsometry for sculptured thin films. Appl. Phys. Lett. 2013;102:123109. doi: 10.1063/1.4799365. DOI
Postava K., Sveklo I., Tekielak M., Mazalski P., Maziewski A., Stupakiewicz A., Urbaniak M., Szymanski B., Stobiecki E. Material selective sensitivity of magneto-optical Kerr effect in NiFe/Au/Co/Au periodic multilayers. IEEE Trans. Magn. 2008;44:3261. doi: 10.1109/TMAG.2008.2002597. DOI
Postava K., Hamrle J., Hamrlová J., Hrabovský D., Životský O., Pištora J., Lukáš D. Depth and material sensitivity in magneto-optic nanostructures. Int. J. Nanotechnol. 2012;9:784. doi: 10.1504/IJNT.2012.046753. DOI
Chizhik A., Vega V., Mohamed A., Prida V.M., Sanchez T., Hernando B., Ipatov M., Zhukova V., Zhukov A.P., Stupakiewicz A., et al. Surface magnetic properties and giant magnetoimpedance effect in Co-based amorphous ribbons. Intermatellics. 2017;86:15. doi: 10.1016/j.intermet.2017.03.010. DOI
Životský O., Hendrych A., Klimša L., Jirásková Y., Buršík J., Gómez J.A.M., Janičkovič D. Surface microstructure and magnetic behavior in FeSiB amorphous ribbons from magneto-optical Kerr effect. J. Magn. Magn. Mater. 2012;324:569. doi: 10.1016/j.jmmm.2011.08.037. DOI
Životský O., Postava K., Kraus L., Jirásková Y., Juraszek J., Teillet J., Barčová K., Švec P., Janičkovič D., Pištora J. Surface and bulk magnetic properties of as-quenched FeNbB ribbons. J. Magn. Magn. Mater. 2008;320:1535. doi: 10.1016/j.jmmm.2008.01.003. DOI
Kraus L., Životský O., Postava K., Švec P., Janičkovič D. Exchange bias in surface-crystalline Fe-Nb-B ribbons. IEEE Trans. Magn. 2008;44:3875–3878. doi: 10.1109/TMAG.2008.2002247. DOI
Inoue A., Takeuchi A., Makino A., Masumoto T. Soft and hard magnetic properties of nanocrystalline Fe-M-B (M = Zr, Nd) base alloys containing intergranular amorphous phase. Sci. Rep. Ritu A. 1996;42:143–156.
Hirotsu A. High resolution electron microscopy of medium-range order in amorphous alloys. Mat. Sci. Eng. A. 1994;180:97–101. doi: 10.1016/0921-5093(94)90172-4. DOI
Aykol M., Mekhrabov A.O., Akdeniz M.V. Nano-scale phase separation in amorphous Fe–B alloys: Atomic and cluster ordering. Acta Mater. 2009;57:171–181. doi: 10.1016/j.actamat.2008.09.005. DOI