Interaction of the hydrogen molecule with the environment: stability of the system and the P T symmetry breaking

. 2020 Jan 14 ; 10 (1) : 215. [epub] 20200114

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31937804

The stability of the hydrogen molecule interacting with the environment according to the balanced gain and loss energy scheme was studied. We determined the properties of the molecule taking into account all electronic interactions, the parameters of the Hamiltonian being computed by the variational method. The interaction of the hydrogen molecule with the environment was modeled parametrically (γ) by means of the non-Hermitian, P T -symmetric Hamiltonian. We showed that the hydrogen molecule is dynamically unstable. Its dissociation time (TD) decreases if the γ parameter increases (for γ → 0 we got TD → + ∞). The dynamic instability of the hydrogen molecule is superimposed on the decrease in its static stability as γ increases. Then we can observe the decrease in the dissociation energy value and the existence of the metastable state of the molecule as γMS reaches 0.659374 Ry. The hydrogen molecule is statically unstable when γ > γD = 1.024638 Ry. Moreover, we can also observe the P T symmetry breaking effect for the electronic Hamiltonian when γ P T = 0.520873 Ry. This effect does not affect such properties of the hydrogen molecule as: the electronic Hamiltonian parameters, the phonon and the rotational energies, and the values of the electron-phonon coupling constants neither it disturbs the dynamics of the electronic subsystem. However, the number of available quantum states goes down to four.

Erratum v

PubMed

Zobrazit více v PubMed

Davies, E. B. Quantum Theory of Open Systems (London: Academic Press, 1976).

Breuer, H.-F. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2007).

Klett M, Cartarius H, Dast D, Main J, Wunner G. Relation between pt -symmetry breaking and topologically nontrivial phases in the su-schrieffer-heeger and kitaev models. Physical Review A. 2017;95:053626. doi: 10.1103/PhysRevA.95.053626. DOI

Kołos W, Wolniewicz L. Accurate adiabatic treatment of the ground state of the hydrogen molecule. The Journal of Chemical Physics. 1964;41:3663. doi: 10.1063/1.1725796. DOI

Kołos W, Wolniewicz L. Improved theoretical ground-state energy of the hydrogen molecule. The Journal of Chemical Physics. 1968;49:404. doi: 10.1063/1.1669836. DOI

Kądzielawa AP, et al. h2 and (h2)2 molecules with an ab initio optimization of wave functions in correlated state: electron proton couplings and intermolecular microscopic parameters. New Journal of Physics. 2014;16:123022. doi: 10.1088/1367-2630/16/12/123022. DOI

Jarosik MW, Szczȩśniak R, Durajski AP, Kalaga JK, Leoński W. Influence of external extrusion on stability of hydrogen molecule and its chaotic behavior. Chaos. 2018;28:013126. doi: 10.1063/1.5008986. PubMed DOI

Bender CM. Making sense of non-hermitian hamiltonians. Report on Progress in Physics. 2007;70:947. doi: 10.1088/0034-4885/70/6/R03. DOI

Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011).

Bender CM, Boettcher S. Real spectra in non-hermitian hamiltonians having pt symmetry. Physical Review Letters. 1998;80:5243. doi: 10.1103/PhysRevLett.80.5243. DOI

Bender CM. Pt-symmetric quantum mechanics. Journal of Mathematical Physics. 1999;40:2201. doi: 10.1063/1.532860. DOI

Bender CM, Brody DC, Jones HF. Complex extension of quantum mechanics. Physical Review Letters. 2002;89:270401. doi: 10.1103/PhysRevLett.89.270401. PubMed DOI

Bender CM, Brody DC, Jones HF. Must a hamiltonian be hermitian? American Journal of Physics. 2003;71:1095. doi: 10.1119/1.1574043. DOI

Bender CM, Mannheim PD. Exactly solvable pt -symmetric hamiltonian having no hermitian counterpart. Physical Review D. 2008;78:025022. doi: 10.1103/PhysRevD.78.025022. DOI

Hiller M, Kottos T, Ossipov A. Bifurcations in resonance widths of an open bose-hubbard dimer. Physical Review A. 2006;73:063625. doi: 10.1103/PhysRevA.73.063625. DOI

Graefe EM, Korsch HJ, Niederle AE. Mean-field dynamics of a non-hermitian bose-hubbard dimer. Physical Review Letters. 2008;101:150408. doi: 10.1103/PhysRevLett.101.150408. PubMed DOI

Graefe EM, Korsch HJ, Niederle AE. Quantum-classical correspondence for a non-hermitian bose-hubbard dimer. Physical Review A. 2010;82:013629. doi: 10.1103/PhysRevA.82.013629. PubMed DOI

Graefe EM. Stationary states of a pt symmetric two-mode bose–einstein condensate. Journal of Physics A: Mathematical and Theoretical. 2012;45:444015. doi: 10.1088/1751-8113/45/44/444015. DOI

Kreibich M, Main J, Cartarius H, Wunner G. Tilted optical lattices with defects as realizations of pt symmetry in bose-einstein condensates. Physical Review A. 2016;93:023624. doi: 10.1103/PhysRevA.93.023624. DOI

Dast D, Haag D, Cartarius H, Main J, Wunner G. Stationary states in the many-particle description of bose-einstein condensates with balanced gain and loss. Physical Review A. 2017;96:023625. doi: 10.1103/PhysRevA.96.023625. DOI

Makris KG, El-Ganainy R, Christodoulides DN. Beam dynamics in pt symmetric optical lattices. Physical Review Letters. 2008;100:103904. doi: 10.1103/PhysRevLett.100.103904. PubMed DOI

Guo A, et al. Observation of pt-symmetry breaking in complex optical potentials. Physical Review Letters. 2009;103:093902. doi: 10.1103/PhysRevLett.103.093902. PubMed DOI

Rüter CE, et al. Observation of parity–time symmetry in optics. Nature Physics. 2010;6:192. doi: 10.1038/nphys1515. DOI

Peng B, Özdemir SK, Lei F, Monifi F, Gianfreda MEA. Parity–time-symmetric whispering-gallery microcavities. Nature Physics. 2014;10:394. doi: 10.1038/nphys2927. DOI

Dattoli G, Torre A, Mignani R. Non-hermitian evolution of two-level quantum systems. Physical Review A. 1990;42:1467. doi: 10.1103/PhysRevA.42.1467. PubMed DOI

Moiseyev N. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Physics Reports. 1998;302:212. doi: 10.1016/S0370-1573(98)00002-7. DOI

Okołowicz J, Płoszajczak M, Rotter I. Dynamics of quantum systems embedded in a continuum. Physics Reports. 2003;374:271. doi: 10.1016/S0370-1573(02)00366-6. DOI

Berry MV. Physics of nonhermitian degeneracies. Czechoslovak Journal of Physics. 2004;54:1039. doi: 10.1023/B:CJOP.0000044002.05657.04. DOI

Graefe EM, Höning M, Korsch HJ. Classical limit of non-hermitian quantum dynamics—a generalized canonical structure. Journal of Physics A: Mathematical and Theoretica. 2010;43:075306. doi: 10.1088/1751-8113/43/7/075306. DOI

Kalaga JK. The entanglement generation in pt- symmetric optical quadrimer system. Symmetry. 2019;11:1110. doi: 10.3390/sym11091110. DOI

Perina J, Luks A. Quantum behavior of a pt- symmetric two-mode system with cross-kerr nonlinearity. Symmetry. 2019;11:1120. doi: 10.3390/sym11081020. DOI

Metzger RM. Electrical rectification by a molecule: the advent of unimolecular electronic devices. Accounts of Chemcal Research. 1999;32:950. doi: 10.1021/ar9900663. DOI

Chen J, Reed MA, Rawlett AM, Tour JM. Large on-off ratios and negative differential resistance in a molecular electronic device. Science. 1999;286:1550. doi: 10.1126/science.286.5444.1550. PubMed DOI

Gao HJ, et al. Reversible, nanometer-scale conductance transitions in an organic complex. Physical Review Letters. 2000;84:1780. doi: 10.1103/PhysRevLett.84.1780. PubMed DOI

Collier CP, et al. Electronically configurable molecular-based logic gates. Science. 1999;285:391. doi: 10.1126/science.285.5426.391. PubMed DOI

Reed MA, Chen J. Molecular random access memory cell. Applied Physics Letters. 2001;78:3735. doi: 10.1063/1.1377042. DOI

Su TA, Neupane ML, Steigerwald Madn, Venkataraman L, Nuckolls C. Chemical principles of single-molecule electronics. Nature Reviews Materials. 2016;1:1. doi: 10.1038/natrevmats.2016.2. DOI

Schrödinger E. Quantisirung als eigenwertproblem i. Annalen der Physik. 1926;79:361. doi: 10.1002/andp.19263840404. DOI

Schrödinger E. Quantisirung als eigenwertproblem ii. Annalen der Physik. 1926;79:489. doi: 10.1002/andp.19263840602. DOI

Schrödinger E. Quantisirung als eigenwertproblem iii. Annalen der Physik. 1926;80:734. doi: 10.1002/andp.19263840804. DOI

Schrödinger E. Quantisirung als eigenwertproblem iv. Annalen der Physik. 1926;81:109. doi: 10.1002/andp.19263861802. DOI

Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems (McGraw-Hill Book Company, 1971).

Dast D, Haag D, Cartarius H, Main J, Wunner G. Bose-einstein condensates with balanced gain and loss beyond mean-field theory. Physical Review A. 2016;94:053601. doi: 10.1103/PhysRevA.94.053601. DOI

Cartarius, H. Quantum systems with balanced gain and loss, signatures of branch points, and dissociation effects (Habilitationsschrift, 2014).

Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

Trimborn F, Witthaut D, Wimberger S. Mean-field dynamics of a two-mode bose-einstein condensate subject to noise and dissipation. Journal of Physics B. 2008;41:171001. doi: 10.1088/0953-4075/41/17/171001. PubMed DOI

Dast D, Haag D, Cartarius H, Wunner G. Quantum master equation with balanced gain and loss. Physical Review A. 2014;90:052120. doi: 10.1103/PhysRevA.90.052120. DOI

Bardeen J, Cooper LN, Schrieffer JR. Microscopic theory of superconductivity. Physical Review. 1957;106:162. doi: 10.1103/PhysRev.106.162. DOI

Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Physical Review. 1957;108:1175. doi: 10.1103/PhysRev.108.1175. DOI

Szczȩśniak R. Pairing mechanism for the high-tc superconductivity: symmetries and thermodynamic properties. PloS One. 2012;7:e31873. doi: 10.1371/journal.pone.0031873. PubMed DOI PMC

Sergi A, Zloshchastiev KG. Non-hermitian quantum dynamics of a two-level system and models of dissipative environments. International Journal of Modern Physics B. 2013;27:1350163. doi: 10.1142/S0217979213501634. DOI

Smit RHM, et al. Measurement of the conductance of a hydrogen molecule. Nature. 2002;419:906. doi: 10.1038/nature01103. PubMed DOI

Heurich, J., Pauly, F., Cuevas, J. C., Wenzel, W. & Schon, G. Conductance of a hydrogen molecule. arXiv:condmat/0211635 (2002).

Cuevas JC, Heurich J, Pauly F, Wenzel W, Schon G. Theoretical description of the electrical conduction in atomic and molecular junctions. Nanotechnology. 2003;14:R29. doi: 10.1088/0957-4484/14/8/201. DOI

Csonka S, Halbritter A, Mihaly G. Conductance of pd-h nanojunctions. Physical Review Letters. 2004;93:016802–1. doi: 10.1103/PhysRevLett.93.016802. DOI

Garcia Y, et al. Electronic transport and vibrational modes in a small molecular bridge: h2 in pt nanocontacts. Physical Review B. 2004;69:041402(R). doi: 10.1103/PhysRevB.69.041402. DOI

Thygesen KS, Jacobsen KW. Conduction mechanism in a molecular hydrogen contact. Physical Review Letters. 2005;94:036807. doi: 10.1103/PhysRevLett.94.036807. PubMed DOI

Kristensen IS, Paulsson M, Thygesen KS, Jacobsen KW. Inelastic scattering in metal-h2-metal junctions. Physical Review B. 2009;79:235411. doi: 10.1103/PhysRevB.79.235411. DOI

Kiguchi M, Nakazumi T, Hashimoto K, Murakoshi K. Atomic motion in h2 and d2 single-molecule junctions induced by phonon excitation. Physical Review B. 2010;81:045420. doi: 10.1103/PhysRevB.81.045420. DOI

Motta C, Fratesi G, Trioni MI. Conductance calculation of hydrogen molecular junctions between cu electrodes. Physical Review B. 2013;87:075415. doi: 10.1103/PhysRevB.87.075415. DOI

Li S, Xie Y-Q, Huy Y. Low conductance of the nickel atomic junctions in hydrogen atmosphere. Frontiers of Physics. 2017;12(4):127305. doi: 10.1007/s11467-016-0647-5. DOI

Baroni, S. et al. Quantum espresso, http://www.pwscf.org (1986).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...