Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of [Formula: see text] symmetry

. 2020 Nov 16 ; 10 (1) : 19906. [epub] 20201116

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33199787

Grantová podpora
DEC-2019/34/A/ST2/00081 Narodowe Centrum Nauki
19-19002S Grantová agentura České Republiky
CZ.1.05/2.1.00/19.0377 Ministerstvo školství, Mládeže a Tělovýchovy

We study symmetries of open bosonic systems in the presence of laser pumping. Non-Hermitian Hamiltonians describing these systems can be parity-time ([Formula: see text]) symmetric in special cases only. Systems exhibiting this symmetry are characterised by real-valued energy spectra and can display exceptional points, where a symmetry-breaking transition occurs. We demonstrate that there is a more general type of symmetry, i.e., rotation-time ([Formula: see text]) symmetry. We observe that [Formula: see text]-symmetric non-Hermitian Hamiltonians exhibit real-valued energy spectra which can be made singular by symmetry breaking. To calculate the spectra of the studied bosonic non-diagonalisable Hamiltonians we apply diagonalisation methods based on bosonic algebra. Finally, we list a versatile set rules allowing to immediately identifying or constructing [Formula: see text]-symmetric Hamiltonians. We believe that our results on the [Formula: see text]-symmetric class of bosonic systems and their spectral singularities can lead to new applications inspired by those of the [Formula: see text]-symmetric systems.

Zobrazit více v PubMed

Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater.18, 783–798 (2019). PubMed

Miri, M.-A. & Alu, A. Exceptional points in optics and photonics. Science363, eaar7709 (2019). PubMed

El-Ganainy R, et al. Non-Hermitian physics and DOI

Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having DOI

Teimourpour, M. H., Zhong, Q., Khajavikhan, M. & El-Ganainy, R. Higher order exceptional points in discrete photonics platforms. In Christodoulides, D. & Yang, J. (eds.) Parity-time Symmetry and Its Applications, 261–275 (Springer Singapore, Singapore, 2018).

Peng B, et al. Loss-induced suppression and revival of lasing. Science. 2014;346:328–332. doi: 10.1126/science.1258004. PubMed DOI

Minganti F, Miranowicz A, Chhajlany RW, Nori F. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps. Phys. Rev. A. 2019;100:062131. doi: 10.1103/PhysRevA.100.062131. DOI

Arkhipov II, Miranowicz A, Minganti F, Nori F. Quantum and semiclassical exceptional points of a linear system of coupled cavities with losses and gain within the Scully-Lamb laser theory. Phys. Rev. A. 2020;101:013812. doi: 10.1103/PhysRevA.101.013812. DOI

Minganti F, Miranowicz A, Chhajlany RW, Arkhipov II, Nori F. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Phys. Rev. A. 2020;101:062112. doi: 10.1103/PhysRevA.101.062112. DOI

Lau H-K, Clerk AA. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 2018;9:4320. doi: 10.1038/s41467-018-06477-7. PubMed DOI PMC

Shi C, et al. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. 2016;7:1–5. PubMed PMC

Achilleos V, Theocharis G, Richoux O, Pagneux V. Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption. Phys. Rev. B. 2017;95:144303. doi: 10.1103/PhysRevB.95.144303. DOI

Ding K, Ma G, Xiao M, Zhang ZQ, Chan CT. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X. 2016;6:021007.

Cartarius H, Main J, Wunner G. Exceptional points in atomic spectra. Phys. Rev. Lett. 2007;99:173003. doi: 10.1103/PhysRevLett.99.173003. PubMed DOI

Zhen B, et al. Spawning rings of exceptional points out of Dirac cones. Nature. 2015;525:354–358. doi: 10.1038/nature14889. PubMed DOI

Lin Z, Pick A, Lončar M, Rodriguez AW. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 2016;117:107402. doi: 10.1103/PhysRevLett.117.107402. PubMed DOI

Wrona IA, et al. Interaction of the hydrogen molecule with the environment: stability of the system and the PubMed DOI PMC

Huang, R. et al. Exceptional photon blockade. arXiv preprint arXiv:2001.09492 (2020).

Yin X, Zhang X. Unidirectional light propagation at exceptional points. Nat. Mater. 2013;12:175. doi: 10.1038/nmat3576. PubMed DOI

Jin L, Wang P, Song Z. One-way light transport controlled by synthetic magnetic fluxes and DOI

Peng B, et al. Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U.S.A. 2016;113:6845–6850. doi: 10.1073/pnas.1603318113. PubMed DOI PMC

Jin L, Song Z. Incident direction independent wave propagation and unidirectional lasing. Phys. Rev. Lett. 2018;121:073901. doi: 10.1103/PhysRevLett.121.073901. PubMed DOI

Xu H, Mason D, Jiang L, Harris J. Topological energy transfer in an optomechanical system with exceptional points. Nature. 2016;537:80–83. doi: 10.1038/nature18604. PubMed DOI

Zhong Q, Christodoulides DN, Khajavikhan M, Makris KG, El-Ganainy R. Power-law scaling of extreme dynamics near higher-order exceptional points. Phys. Rev. A. 2018;97:020105. doi: 10.1103/PhysRevA.97.020105. DOI

Zhang M, et al. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett. 2019;123:180501. doi: 10.1103/PhysRevLett.123.180501. PubMed DOI

Chen W, Özdemir ŞK, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature. 2017;548:192–196. doi: 10.1038/nature23281. PubMed DOI

Lin Z, et al. Unidirectional invisibility induced by PubMed DOI

Feng L, Wong ZJ, Ma R-M, Wang Y, Zhang X. Single-mode laser by Parity-time symmetry breaking. Science. 2014;346:972–975. doi: 10.1126/science.1258479. PubMed DOI

Peng B, et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 2014;10:394–398. doi: 10.1038/nphys2927. DOI

Feng L, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 2013;12:108–113. doi: 10.1038/nmat3495. PubMed DOI

Hodaei H, Miri M-A, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time-symmetric microring lasers. Science. 2014;346:975–978. doi: 10.1126/science.1258480. PubMed DOI

Chang L, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 2014;8:524. doi: 10.1038/nphoton.2014.133. DOI

Fleury R, Sounas D, Alu A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 2015;6:1–7. doi: 10.1038/ncomms6905. PubMed DOI

Sun Y, Tan W, Li H-Q, Li J, Chen H. Experimental demonstration of a coherent perfect absorber with PubMed DOI

Liu Z-P, et al. Metrology with PubMed DOI

Hodaei H, et al. Enhanced sensitivity at higher-order exceptional points. Nature. 2017;548:187–191. doi: 10.1038/nature23280. PubMed DOI

Bender CM. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007;70:947. doi: 10.1088/0034-4885/70/6/R03. DOI

Bender, C. M. et al.PT Symmetry (World Scientific (Europe), 2019).

Garcia J, Rossignoli R. Spectrum and normal modes of non-Hermitian quadratic boson operators. Phys. Rev. A. 2017;96:062130. doi: 10.1103/PhysRevA.96.062130. DOI

Nixon S, Yang J. All-real spectra in optical systems with arbitrary gain-and-loss distributions. Phys. Rev. A. 2016;93:031802. doi: 10.1103/PhysRevA.93.031802. DOI

Özdemir Ş, Rotter S, Nori F, Yang L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 2019;18:783. doi: 10.1038/s41563-019-0304-9. PubMed DOI

Zhang D-J, Wang Q-H, Gong J. Time-dependent DOI

Zhang XZ, Song Z. Non-Hermitian anisotropic DOI

Zhang XZ, Song Z. Geometric phase and phase diagram for a non-Hermitian quantum DOI

Wang C, Yang M-L, Guo C-X, Zhao X-M, Kou S-P. Effective non-Hermitian physics for degenerate ground states of a non-Hermitian Ising model with DOI

Ohashi T, Kobayashi S, Kawaguchi Y. Generalized Berry phase for a bosonic Bogoliubov system with exceptional points. Phys. Rev. A. 2020;101:013625. doi: 10.1103/PhysRevA.101.013625. DOI

Chimczak G, Bartkiewicz K, Ficek Z, Tanaś R. Creating a switchable optical cavity with controllable quantum-state mapping between two modes. Sci. Rep. 2018;8:14740. doi: 10.1038/s41598-018-32989-9. PubMed DOI PMC

Kowalewska-Kudłaszyk A, Chimczak G. Asymmetry of quantum correlations decay in nonlinear bosonic system. Symmetry. 2019;11:1023. doi: 10.3390/sym11081023. DOI

Zhang G-Q, You JQ. Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B. 2019;99:054404. doi: 10.1103/PhysRevB.99.054404. DOI

Peřina J, Lukš A, Kalaga JK, Leoński W, Miranowicz A. Nonclassical light at exceptional points of a quantum DOI

Heuck M, Jacobs K, Englund DR. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett. 2020;124:160501. doi: 10.1103/PhysRevLett.124.160501. PubMed DOI

Wang P, Jin L, Zhang G, Song Z. Wave emission and absorption at spectral singularities. Phys. Rev. A. 2016;94:053834. doi: 10.1103/PhysRevA.94.053834. DOI

Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Phys. Rev. Lett. 1961;7:118–119. doi: 10.1103/PhysRevLett.7.118. DOI

Boyd RW. Nonlinear Optics. Amsterdam: Elsevier; 2008.

Shen YR. The Principles of Nonlinear Optics. New York: Wiley; 1984.

Kockum AF, Miranowicz A, Macrì V, Savasta S, Nori F. Deterministic quantum nonlinear optics with single atoms and virtual photons. Phys. Rev. A. 2017;95:063849. doi: 10.1103/PhysRevA.95.063849. DOI

Mostafazadeh, A. Physics of spectral singularities. In Kielanowski, P., Bieliavsky, P., Odzijewicz, A., Schlichenmaier, M. & Voronov, T. (eds.) Geometric Methods in Physics, 145–165 (Springer, Berlin, 2015).

Horodecki P, Ekert A. Method for direct detection of quantum entanglement. Phys. Rev. Lett. 2002;89:127902. doi: 10.1103/PhysRevLett.89.127902. PubMed DOI

Loan CF. The ubiquitous Kronecker product. J. Comput. Appl. Math. 2000;123:85–100. doi: 10.1016/S0377-0427(00)00393-9. DOI

Zhou H, Lee JY, Liu S, Zhen B. Exceptional surfaces in PT-symmetric non-Hermitian photonic systems. Optica. 2019;6:190–193. doi: 10.1364/OPTICA.6.000190. DOI

Okugawa R, Yokoyama T. Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries. Phys. Rev. B. 2019;99:041202. doi: 10.1103/PhysRevB.99.041202. DOI

Zhong Q, et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett. 2019;122:153902. doi: 10.1103/PhysRevLett.122.153902. PubMed DOI

Gerry CC. Squeezing from DOI

Drummond PD, Walls DF. Quantum theory of optical bistability. I. Nonlinear polarisability model. J. Phys. A. 1980;13:725–741. doi: 10.1088/0305-4470/13/2/034. DOI

Milburn GJ, Holmes CA. Quantum coherence and classical chaos in a pulsed parametric oscillator with a Kerr nonlinearity. Phys. Rev. A. 1991;44:4704–4711. doi: 10.1103/PhysRevA.44.4704. PubMed DOI

Chefles A, Barnett SM. Quantum theory of two-mode nonlinear directional couplers. J. Mod. Opt. 1996;43:709–727. doi: 10.1080/09500349608232778. DOI

Bernstein L. Quantizing a self-trapping transition. Phys. D. 1993;68:174–179. doi: 10.1016/0167-2789(93)90043-Z. DOI

Peřina J, Peřina J. Quantum statistics of nonlinear optical couplers. Prog. Opt. 2000;41:361–419. doi: 10.1016/S0079-6638(00)80020-7. DOI

Leoński W, Kowalewska-Kudłaszyk A. Quantum scissors—finite-dimensional states engineering. Prog. Opt. 2011;56:131–185. doi: 10.1016/B978-0-444-53886-4.00003-4. DOI

Gerace D, Savona V. Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A. 2014;89:031803. doi: 10.1103/PhysRevA.89.031803. DOI

Zhou YH, Shen HZ, Yi XX. Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A. 2015;92:023838. doi: 10.1103/PhysRevA.92.023838. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The effect of thermal photons on exceptional points in coupled resonators

. 2023 Apr 11 ; 13 (1) : 5859. [epub] 20230411

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...