The effect of thermal photons on exceptional points in coupled resonators
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DEC-2019/34/A/ST2/00081
Narodowe Centrum Nauki
DEC-2019/34/A/ST2/00081
Narodowe Centrum Nauki
DEC-2019/34/A/ST2/00081
Narodowe Centrum Nauki
DEC-2019/34/A/ST2/00081
Narodowe Centrum Nauki
CZ.1.05/2.1.00/19.0377
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/18_053/0016919
Ministerstvo Školství, Mládeže a Tělovýchovy
19-19002S
Grantová Agentura České Republiky
PubMed
37041323
PubMed Central
PMC10090181
DOI
10.1038/s41598-023-32864-2
PII: 10.1038/s41598-023-32864-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We analyse two quantum systems with hidden parity-time ([Formula: see text]) symmetry: one is an optical device, whereas another is a superconducting microwave-frequency device. To investigate their symmetry, we introduce a damping frame (DF), in which loss and gain terms for a given Hamiltonian are balanced. We show that the non-Hermitian Hamiltonians of both systems can be tuned to reach an exceptional point (EP), i.e., the point in parameter space at which a transition from broken to unbroken hidden [Formula: see text] symmetry takes place. We calculate a degeneracy of a Liouvillian superoperator, which is called the Liouvillian exceptional point (LEP), and show that, in the optical domain, LEP is equivalent to EP obtained from the non-Hermitian Hamiltonian (HEP). We also report breaking the equivalence between LEP and HEP by a non-zero number of thermal photons for the microwave-frequency system.
Zobrazit více v PubMed
Özdemir ŞK, Rotter S, Nori F, Yang L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 2019;18:783–798. doi: 10.1038/s41563-019-0304-9. PubMed DOI
El-Ganainy R, et al. Non-hermitian physics and pt symmetry. Nat. Phys. 2018;14:11–19. doi: 10.1038/nphys4323. DOI
Miri M-A, Alù A. Exceptional points in optics and photonics. Science. 2019;363:eaar7709. doi: 10.1126/science.aar7709. PubMed DOI
Ashida Y, Gong Z, Ueda M. Non-hermitian physics. Adv. Phys. 2020;69:249–435. doi: 10.1080/00018732.2021.1876991. DOI
Bender CM, Boettcher S. Real spectra in non-hermitian hamiltonians having DOI
Bender CM. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007;70:947. doi: 10.1088/0034-4885/70/6/R03. DOI
Bender CM, et al. PT Symmetry. World Scientific (Europe); 2019.
Kato T. Perturbation theory for linear operators. Springer; 1966.
Mostafazadeh, A. Physics of Spectral Singularities. In Kielanowski, P., Bieliavsky, P., Odzijewicz, A., Schlichenmaier, M. & Voronov, T. (eds.) Geometric Methods in Physics (Springer Berlin, 2015), pp. 145–165 10.1007/978-3-319-18212-4_10.
Chen W, Kaya Özdemir Ş, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature. 2017;548:192–196. doi: 10.1038/nature23281. PubMed DOI
Lin Z, Pick A, Lončar M, Rodriguez AW. Enhanced spontaneous emission at third-order dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 2016;117:107402. doi: 10.1103/PhysRevLett.117.107402. PubMed DOI
Makris KG, El-Ganainy R, Christodoulides DN, Musslimani ZH. Beam dynamics in PubMed DOI
Jin L, Wang P, Song Z. One-way light transport controlled by synthetic magnetic fluxes and DOI
Feng L, Wong ZJ, Ma R-M, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Science. 2014;346:972–975. doi: 10.1126/science.1258479. PubMed DOI
Wang C, et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 2020;16:334–340. doi: 10.1038/s41567-019-0746-7. DOI
Hatano N. Exceptional points of the lindblad operator of a two-level system. Mol. Phys. 2019;117:2121–2127. doi: 10.1080/00268976.2019.1593535. DOI
Peřina J, Jr, Lukš A, Kalaga J, Leoński W, Miranowicz A. Nonclassical light at exceptional points of a quantum DOI
Minganti F, Miranowicz A, Chhajlany RW, Nori F. Quantum exceptional points of non-hermitian hamiltonians and liouvillians: The effects of quantum jumps. Phys. Rev. A. 2019;100:062131. doi: 10.1103/PhysRevA.100.062131. DOI
Minganti F, Biella A, Bartolo N, Ciuti C. Spectral theory of liouvillians for dissipative phase transitions. Phys. Rev. A. 2018;98:042118. doi: 10.1103/PhysRevA.98.042118. DOI
Arkhipov II, Miranowicz A, Minganti F, Nori F. Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between DOI
Carmichael H. An Open Systems Approach to Quantum Optics. Berlin, Heidelberg: Springer; 1993.
Plenio MB, Knight PL. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 1998;70:101–144. doi: 10.1103/RevModPhys.70.101. DOI
Naghiloo M, Abbasi M, Joglekar YN, Murch KW. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 2019;15:1232–1236. doi: 10.1038/s41567-019-0652-z. DOI
Arkhipov II, Miranowicz A, Minganti F, Nori F. Quantum and semiclassical exceptional points of a linear system of coupled cavities with losses and gain within the scully-lamb laser theory. Phys. Rev. A. 2020;101:013812. doi: 10.1103/PhysRevA.101.013812. DOI
Wiersig J. Robustness of exceptional-point-based sensors against parametric noise: The role of hamiltonian and liouvillian degeneracies. Phys. Rev. A. 2020;101:053846. doi: 10.1103/PhysRevA.101.053846. DOI
Minganti F, Miranowicz A, Chhajlany RW, Arkhipov II, Nori F. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories. Phys. Rev. A. 2020;101:062112. doi: 10.1103/PhysRevA.101.062112. DOI
Ou X, Huang J, Lee C. Quantum exceptional points of non-hermitian hamiltonian and liouvillian in dissipative quantum rabi model. Chin. Phys. B. 2021;30:110309. doi: 10.1088/1674-1056/ac0349. DOI
Chen W, Abbasi M, Joglekar YN, Murch KW. Quantum jumps in the non-Hermitian dynamics of a superconducting qubit. Phys. Rev. Lett. 2021;127:140504. doi: 10.1103/PhysRevLett.127.140504. PubMed DOI
Chen W, et al. Decoherence-induced exceptional points in a dissipative superconducting qubit. Phys. Rev. Lett. 2022;128:110402. doi: 10.1103/PhysRevLett.128.110402. PubMed DOI
Bu J-T, et al. Enhancement of quantum heat engine by encircling a liouvillian exceptional point. Phys. Rev. Lett. 2023;130:110402. doi: 10.1103/PhysRevLett.130.110402. PubMed DOI
Zhang D-J, Wang Q-H, Gong J. Time-dependent DOI
Mostafazadeh A. Energy observable for a quantum system with a dynamical hilbert space and a global geometric extension of quantum theory. Phys. Rev. D. 2018;98:046022. doi: 10.1103/PhysRevD.98.046022. DOI
Zhang D-J, Wang Q-H, Gong J. Quantum geometric tensor in DOI
Bian Z, et al. Conserved quantities in parity-time symmetric systems. Phys. Rev. Res. 2020;2:022039. doi: 10.1103/PhysRevResearch.2.022039. DOI
Mostafazadeh A. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 2010;07:1191–1306. doi: 10.1142/S0219887810004816. DOI
Mostafazadeh A. Pseudo-hermiticity versus pt symmetry: The necessary condition for the reality of the spectrum of a non-hermitian hamiltonian. J. Math. Phys. 2002;43:205–214. doi: 10.1063/1.1418246. DOI
Mostafazadeh A. Pseudo-hermiticity versus pt-symmetry. ii. a complete characterization of non-hermitian hamiltonians with a real spectrum. J. Math. Phys. 2002;43:2814–2816. doi: 10.1063/1.1461427. DOI
Mostafazadeh A. Pseudo-hermiticity versus pt-symmetry iii: Equivalence of pseudo-hermiticity and the presence of antilinear symmetries. J. Math. Phys. 2002;43:3944–3951. doi: 10.1063/1.1489072. DOI
Dalibard J, Castin Y, Mølmer K. Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 1992;68:580–583. doi: 10.1103/PhysRevLett.68.580. PubMed DOI
Hegerfeldt GC. How to reset an atom after a photon detection: Applications to photon-counting processes. Phys. Rev. A. 1993;47:449–455. doi: 10.1103/PhysRevA.47.449. PubMed DOI
Horodecki P, Ekert A. Method for direct detection of quantum entanglement. Phys. Rev. Lett. 2002;89:127902. doi: 10.1103/PhysRevLett.89.127902. PubMed DOI
Loan CF. The ubiquitous Kronecker product. J. Comput. Appl. Math. 2000;123:85–100. doi: 10.1016/S0377-0427(00)00393-9. DOI
Teimourpour, M. H., Zhong, Q., Khajavikhan, M. & El-Ganainy, R. Higher order exceptional points in discrete photonics platforms. In Christodoulides, D. & Yang, J. (eds.) Parity-time Symmetry and Its Applications, pp. 261–275 (Springer, 2018) 10.1007/978-981-13-1247-2_10.
Lange E, Chimczak G, Kowalewska-Kudłaszyk A, Bartkiewicz K. Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of PubMed DOI PMC
Wu Y, Zhou P, Li T, Wan W, Zou Y. High-order exceptional point based optical sensor. Opt. Express. 2021;29:6080–6091. doi: 10.1364/oe.418644. PubMed DOI
Peng B, et al. Loss-induced suppression and revival of lasing. Science. 2014;346:328–332. doi: 10.1126/science.1258004. PubMed DOI
Perina Jr, J., Miranowicz, A., Chimczak, G. & Kowalewska-Kudłaszyk, A. Quantum Liouvillian exceptional and diabolical points for bosonic fields with quadratic Hamiltonians: The Heisenberg-Langevin equation approach. Quantum 6, 883 (2022) 10.22331/q-2022-12-22-883 DOI
Plankensteiner, D., Hotter, C. & Ritsch, H. QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems. Quantum6, 617 (2022) 10.22331/q-2022-01-04-617.
Purkayastha A, Kulkarni M, Joglekar YN. Emergent DOI
Peřina J. Quantum Statistics of Linear and Nonlinear Optical Phenomena. Dordrecht: Kluwer; 1991.
Riksen H. The Fokker-Planck equation. Springer; 1996.