Distinct seasonal dynamics of responses to elevated CO2 in two understorey grass species differing in shade-tolerance
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31938473
PubMed Central
PMC6953567
DOI
10.1002/ece3.5738
PII: ECE35738
Knihovny.cz E-zdroje
- Klíčová slova
- Calamagrostis arundinacea, Luzula sylvatica, ecological niche, glass domes, light environment, manipulation experiment, seasonal dynamics,
- Publikační typ
- časopisecké články MeSH
Understorey plant communities are crucial to maintain species diversity and ecosystem processes including nutrient cycling and regeneration of overstorey trees. Most studies exploring effects of elevated CO2 concentration ([CO2]) in forests have, however, been done on overstorey trees, while understorey communities received only limited attention.The hypothesis that understorey grass species differ in shade-tolerance and development dynamics, and temporally exploit different niches under elevated [CO2], was tested during the fourth year of [CO2] treatment. We assumed stimulated carbon gain by elevated [CO2] even at low light conditions in strongly shade-tolerant Luzula sylvatica, while its stimulation under elevated [CO2] in less shade-tolerant Calamagrostis arundinacea was expected only in early spring when the tree canopy is not fully developed.We found evidence supporting this hypothesis. While elevated [CO2] stimulated photosynthesis in L. sylvatica mainly in the peak of the growing season (by 55%-57% in July and August), even at low light intensities (50 µmol m-2 s-1), stimulatory effect of [CO2] in C. arundinacea was found mainly under high light intensities (200 µmol m-2 s-1) at the beginning of the growing season (increase by 171% in May) and gradually declined during the season. Elevated [CO2] also substantially stimulated leaf mass area and root-to-shoot ratio in L. sylvatica, while only insignificant increases were observed in C. arundinacea.Our physiological and morphological analyses indicate that understorey species, differing in shade-tolerance, under elevated [CO2] exploit distinct niches in light environment given by the dynamics of the tree canopy.
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden
Zobrazit více v PubMed
Ainsworth, E. A. , & Long, S. P. (2005). What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . New Phytologist, 165, 351–372. 10.1111/j.1469-8137.2004.01224.x PubMed DOI
Ainsworth, E. A. , & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell & Environment, 30, 258–270. 10.1111/j.1365-3040.2007.01641.x PubMed DOI
Albert, K. R. , Ro‐Poulsen, H. , Mikkelsen, T. N. , Michelsen, A. , van der Linden, L. , & Beier, C. (2011). Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. Journal of Experimental Botany, 62, 4253–4266. 10.1093/jxb/err133 PubMed DOI PMC
Anderson, L. J. , Derner, J. D. , Polley, H. W. , Gordon, W. S. , Eissenstat, D. M. , & Jackson, R. B. (2010). Root responses along a subambient to elevated CO2 gradient in a C3–C4 grassland. Global Change Biology, 16, 454–468. 10.1111/j.1365-2486.2009.01975.x DOI
Arnone, J. A. , Zaller, J. G. , Spehn, E. M. , Niklaus, P. A. , Wells, C. E. , & Körner, C. (2000). Dynamics of root systems in native grasslands: Effects of elevated atmospheric CO2 . New Phytologist, 147, 73–85. 10.1046/j.1469-8137.2000.00685.x DOI
Asshoff, R. , Zotz, G. , & Körner, C. (2006). Growth and phenology of mature temperate forest trees in elevated CO2 . Global Change Biology, 12, 848–861. 10.1111/j.1365-2486.2006.01133.x DOI
Augspurger, C. K. , Cheeseman, J. M. , & Salk, C. F. (2005). Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Functional Ecology, 19, 537–546. 10.1111/j.1365-2435.2005.01027.x DOI
Belote, R. T. , Weltzin, J. F. , & Norby, R. J. (2004). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 161, 827–835. 10.1111/j.1469-8137.2004.00977.x PubMed DOI
Bernacchi, C. J. , Singsaas, E. L. , Pimentel, C. , Portis, A. R. , & Long, S. P. (2001). Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant Cell & Environment, 24, 253–259. 10.1111/j.1365-3040.2001.00668.x DOI
Ceulemans, R. , & Mousseau, M. (1994). Tansley review no 71 effects of elevated atmospheric CO2 on woody‐plants. New Phytologist, 127, 425–446. 10.1111/j.1469-8137.1994.tb03961.x DOI
Curtis, P. S. , & Wang, X. (1998). A meta‐analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia, 113, 299–313. 10.1007/s004420050 PubMed DOI
de Graaff, M. A. , van Groenigen, K. J. , Six, J. , Hungate, B. , & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta‐analysis. Global Change Biology, 12, 2077–2091. 10.1111/j.1365-2486.2006.01240.x DOI
DeLucia, E. H. , & Thomas, R. B. (2000). Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia, 122, 11–19. 10.1007/PL00008827 PubMed DOI
Drake, B. G. , Gonzalez‐Meler, M. A. , & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609–639. 10.1146/annurev.arplant.48.1.609 PubMed DOI
Dukes, J. S. , Chiariello, N. R. , Cleland, E. E. , Moore, L. A. , Shaw, M. R. , Thayer, S. , … Field, C. B. (2005). Responses of grassland production to single and multiple global environmental changes. PLOS Biology, 3, 1829–1837. 10.1371/journal.pbio.0030319 PubMed DOI PMC
Farquhar, G. D. , Caemmerer, S. , & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C‐3 species. Planta, 149, 78–90. 10.1007/BF00386231 PubMed DOI
Fiala, K. , Tůma, I. , Holub, P. , & Jandák, J. (2005). The role of Calamagrostis communities in preventing soil acidification and base cation losses in a deforested mountain area affected by acid deposition. Plant and Soil, 268, 35–49. 10.1007/s11104-004-0185-8 DOI
Fiala, K. , Tůma, I. , Holub, P. , Tesařová, M. , Jandák, J. , & Pávková, A. (2001). Importance of grass cover in reduction of negative processes in soil affected by air pollution. Rostlinná Výroba, 47, 377–382.
Gilbert, B. , & Lechowicz, M. J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America, 101, 7651–7656. 10.1073/pnas.0400814101 PubMed DOI PMC
Gilliam, F. S. , & Roberts, M. R. (2003). The herbaceous layer in forests of eastern North America. Oxford, UK: Oxford University Press.
Godefroid, S. , Rucquoij, S. , & Koedam, N. (2005). To what extent do forest herbs recover after clearcutting in beech forest? Forest Ecology and Management, 210, 39–53. 10.1016/j.foreco.2005.02.020 DOI
Guehl, J. M. , Picon, C. , Aussenac, G. , & Gross, P. (1994). Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiology, 14, 707–724. 10.1093/treephys/14.7-8-9.707 PubMed DOI
Harley, P. C. , Thomas, R. B. , Reynolds, J. F. , & Strain, B. R. (1992). Modelling photosynthesis of cotton grown in elevated CO2 . Plant Cell & Environment, 15, 271–282. 10.1111/j.1365-3040.1992.tb00974.x DOI
Hättenschwiler, S. (2001). Tree seedling growth in natural deep shade: Functional traits related to interspecific variation in response to elevated CO2 . Oecologia, 129, 31–42. 10.1007/s004420100699 PubMed DOI
Hättenschwiler, S. , & Körner, C. (1996). Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystem. Oecologia, 106, 172–180. 10.1007/BF00328596 PubMed DOI
Hättenschwiler, S. , & Körner, C. (2000). Tree seedling responses to in‐situ CO2‐enrichment differ among species and depend on understorey light availability. Global Change Biology, 6, 213–226. 10.1046/j.1365-2486.2000.00301.x DOI
Jablonski, L. M. , Wang, X. , & Curtis, P. S. (2002). Plant reproduction under elevated CO2 conditions: A meta‐analysis of reports on 79 crop and wild species. New Phytologist, 156, 9–26. 10.1046/j.1469-8137.2002.00494.x DOI
Kelly, A. A. , van Erp, H. , Quettier, A. L. , Shaw, E. , Menard, G. , Kurup, S. , & Eastmond, P. J. (2013). The SUGAR‐DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis . Plant Physiology, 162, 1282–1289. 10.1104/pp.113.219840 PubMed DOI PMC
Kerstiens, G. (1998). Shade‐tolerance as a predictor of responses to elevated CO2 in trees. Physiologia Plantarum, 102, 472–480. 10.1034/j.1399-3054.1998.1020316.x DOI
Kerstiens, G. (2001). Meta‐analysis of the interaction between shade‐tolerance, light environment and growth response of woody species to elevated CO2 . Acta Oecologica, 22, 61–69. 10.1016/S1146-609X(00)01096-1 DOI
Kim, D. , Oren, R. , & Qian, S. S. (2016). Response to CO2 enrichment of understory vegetation in the shade of forest. Global Change Biology, 22, 944–956. 10.1111/gcb.13126 PubMed DOI
Košvancová, M. , Urban, O. , Šprtová, M. , Hrstka, M. , Kalina, J. , Tomášková, I. , … Marek, M. V. (2009). Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177, 123–130. 10.1016/j.plantsci.2009.04.005 DOI
Kubiske, M. E. , & Pregitzer, K. S. (1996). Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology, 16, 351–358. 10.1093/treephys/16.3.351 PubMed DOI
Leakey, A. D. B. , Ainsworth, E. A. , Bernacchi, C. J. , Rogers, A. , Long, S. P. , & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60, 2859–2876. 10.1093/jxb/erp096 PubMed DOI
Lichtenthaler, H. K. , Ač, A. , Marek, M. V. , Kalina, J. , & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45, 577–588. 10.1016/j.plaphy.2007.04.006 PubMed DOI
Marek, M. V. , Urban, O. , Šprtová, M. , Pokorný, R. , Rosová, Z. , & Kulhavý, J. (2002). Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long‐term impact of elevated CO2 concentration. Photosynthetica, 40, 259–267. 10.1023/A:1021306010135 DOI
Naumburg, E. , & Ellsworth, D. S. (2000). Photosynthesis sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia, 122, 163–174. 10.1007/PL00008844 PubMed DOI
Niklaus, P. A. , & Körner, C. (2004). Synthesis of a six‐year study of calcareous grassland responses to in situ CO2 enrichment. Ecological Monographs, 74, 491–511. 10.1890/03-4047 DOI
Nilsson, M. C. , & Wardle, D. A. (2005). Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421–428. 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2 DOI
Norby, R. J. , DeLucia, E. H. , Gielen, B. , Calfapietra, C. , Giardina, C. P. , King, J. S. , … Oren, R. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18052–18056. 10.1073/pnas.0509478102 PubMed DOI PMC
Norby, R. J. , Warren, J. M. , Iversen, C. M. , Medlyn, B. E. , & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368–19373. 10.1073/pnas.1006463107 PubMed DOI PMC
Osborne, C. P. , LaRoche, J. , Garcia, R. L. , Kimball, B. A. , Wall, G. W. , Pinter, P. J. , … Long, S. P. (1998). Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2? Analysis of a wheat crop under free‐air CO2 enrichment. Plant Physiology, 117, 1037–1045. 10.1104/pp.117.3.1037 PubMed DOI PMC
Pendall, E. , Osanai, Y. , Williams, A. L. , & Hovenden, M. J. (2003). Soil carbon storage under simulated climate change is mediated by plant functional type. Global Change Biology, 17, 505–514. 10.1111/j.1365-2486.2010.02296.x DOI
Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104(105), 77–97. 10.1007/BF00048146 DOI
Poorter, H. , & Navas, M. L. (2003). Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytologist, 157, 175–198. 10.1046/j.1469-8137.2003.00680.x PubMed DOI
Poorter, H. , Niinemets, Ü. , Ntagkas, N. , Siebenkäs, A. , Mäenpää, M. , Matsubara, S. , & Pons, T. L. (2019). A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073–1105. 10.1111/nph.15754 PubMed DOI
Rajsnerová, P. , Klem, K. , Holub, P. , Novotná, K. , Večeřová, K. , Kozáčiková, M. , … Urban, O. (2015). Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiology, 35, 47–60. 10.1093/treephys/tpu104 PubMed DOI
Rogers, H. H. , Peterson, C. M. , McCrimmon, J. N. , & Cure, J. D. (1992). Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell & Environment, 15, 749–752. 10.1111/j.1365-3040.1992.tb01018.x DOI
Royer, P. D. , Cobb, N. S. , Clifford, M. J. , Huang, C. Y. , Breshears, D. D. , Adams, H. D. , & Villegas, J. C. (2011). Extreme climatic event‐triggered overstorey vegetation loss increases understorey solar input regionally: Primary and secondary ecological implications. Journal of Ecology, 99, 714–723. 10.1111/j.1365-2745.2011.01804.x DOI
Šigut, L. , Holišova, P. , Klem, K. , Šprtova, M. , Calfapietra, C. , Marek, M. V. , … Urban, O. (2015). Does long‐term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature? Annals of Botany, 116, 929–939. 10.1093/aob/mcv043 PubMed DOI PMC
Springer, C. J. , & Thomas, R. B. (2007). Photosynthetic responses of forest understory tree species to long‐term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiology, 27, 25–32. 10.1093/treephys/27.1.25 PubMed DOI
Tschaplinski, T. J. , Stewart, D. B. , Hanson, P. J. , & Norby, R. J. (1995). Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist, 129, 63–71. 10.1111/j.1469-8137.1995.tb03010.x PubMed DOI
Urban, O. (2003). Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41, 9–20. 10.1023/A:1025891825050 DOI
Urban, O. , Janouš, D. , Acosta, M. , Czerný, R. , Marková, I. , Navrátil, M. , … Marek, M. V. (2007). Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13, 157–168. 10.1111/j.1365-2486.2006.01265.x DOI
Urban, O. , Janouš, D. , Pokorný, R. , Marková, I. , Pavelka, M. , Fojtík, Z. , … Marek, M. V. (2001). Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39, 395–401. 10.1023/A:1015134427592 DOI
Urban, O. , Klem, K. , Holišová, P. , Šigut, L. , Šprtová, M. , Teslová‐Navrátilová, P. , … Grace, J. (2014). Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. Environmental Pollution, 185, 271–280. 10.1016/j.envpol.2013.11.009 PubMed DOI
Valladares, F. , Laanisto, L. , Niinemets, Ü. , & Zavala, M. A. (2016). Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9(3), 237–251. 10.1080/17550874.2016.1210262 DOI
von Caemmerer, S. (2000). Biochemical Models of Leaf Photosynthesis. Collingwood, ON: CSIRO Publishing.
Wang, A. , Lam, S. K. , Hao, X. , Li, F. Y. , Zong, Y. , Wang, H. , & Li, P. (2018). Elevated CO2 reduces the adverse effects of drought stress on a high‐yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiency. Plant Physiology and Biochemistry, 132, 660–665. 10.1016/j.plaphy.2018.10.016 PubMed DOI
Way, D. A. , Oren, R. , & Kroner, Y. (2015). The space‐time continuum: The effects of elevated CO2 and temperature on trees and the importance of scaling. Plant Cell & Environment, 38, 991–1007. 10.1111/pce.12527 PubMed DOI
Würth, M. K. R. , Winter, K. , & Körner, C. (1998). In situ responses to elevated CO2 in tropical forest understorey plants. Functional Ecology, 12, 886–895. 10.1046/j.1365-2435.1998.00278.x DOI
Xu, L. , & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23, 865–877. 10.1093/treephys/23.13.865 PubMed DOI