Distinct seasonal dynamics of responses to elevated CO2 in two understorey grass species differing in shade-tolerance

. 2019 Dec ; 9 (24) : 13663-13677. [epub] 20191129

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31938473

Understorey plant communities are crucial to maintain species diversity and ecosystem processes including nutrient cycling and regeneration of overstorey trees. Most studies exploring effects of elevated CO2 concentration ([CO2]) in forests have, however, been done on overstorey trees, while understorey communities received only limited attention.The hypothesis that understorey grass species differ in shade-tolerance and development dynamics, and temporally exploit different niches under elevated [CO2], was tested during the fourth year of [CO2] treatment. We assumed stimulated carbon gain by elevated [CO2] even at low light conditions in strongly shade-tolerant Luzula sylvatica, while its stimulation under elevated [CO2] in less shade-tolerant Calamagrostis arundinacea was expected only in early spring when the tree canopy is not fully developed.We found evidence supporting this hypothesis. While elevated [CO2] stimulated photosynthesis in L. sylvatica mainly in the peak of the growing season (by 55%-57% in July and August), even at low light intensities (50 µmol m-2 s-1), stimulatory effect of [CO2] in C. arundinacea was found mainly under high light intensities (200 µmol m-2 s-1) at the beginning of the growing season (increase by 171% in May) and gradually declined during the season. Elevated [CO2] also substantially stimulated leaf mass area and root-to-shoot ratio in L. sylvatica, while only insignificant increases were observed in C. arundinacea.Our physiological and morphological analyses indicate that understorey species, differing in shade-tolerance, under elevated [CO2] exploit distinct niches in light environment given by the dynamics of the tree canopy.

Zobrazit více v PubMed

Ainsworth, E. A. , & Long, S. P. (2005). What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . New Phytologist, 165, 351–372. 10.1111/j.1469-8137.2004.01224.x PubMed DOI

Ainsworth, E. A. , & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell & Environment, 30, 258–270. 10.1111/j.1365-3040.2007.01641.x PubMed DOI

Albert, K. R. , Ro‐Poulsen, H. , Mikkelsen, T. N. , Michelsen, A. , van der Linden, L. , & Beier, C. (2011). Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. Journal of Experimental Botany, 62, 4253–4266. 10.1093/jxb/err133 PubMed DOI PMC

Anderson, L. J. , Derner, J. D. , Polley, H. W. , Gordon, W. S. , Eissenstat, D. M. , & Jackson, R. B. (2010). Root responses along a subambient to elevated CO2 gradient in a C3–C4 grassland. Global Change Biology, 16, 454–468. 10.1111/j.1365-2486.2009.01975.x DOI

Arnone, J. A. , Zaller, J. G. , Spehn, E. M. , Niklaus, P. A. , Wells, C. E. , & Körner, C. (2000). Dynamics of root systems in native grasslands: Effects of elevated atmospheric CO2 . New Phytologist, 147, 73–85. 10.1046/j.1469-8137.2000.00685.x DOI

Asshoff, R. , Zotz, G. , & Körner, C. (2006). Growth and phenology of mature temperate forest trees in elevated CO2 . Global Change Biology, 12, 848–861. 10.1111/j.1365-2486.2006.01133.x DOI

Augspurger, C. K. , Cheeseman, J. M. , & Salk, C. F. (2005). Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Functional Ecology, 19, 537–546. 10.1111/j.1365-2435.2005.01027.x DOI

Belote, R. T. , Weltzin, J. F. , & Norby, R. J. (2004). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist, 161, 827–835. 10.1111/j.1469-8137.2004.00977.x PubMed DOI

Bernacchi, C. J. , Singsaas, E. L. , Pimentel, C. , Portis, A. R. , & Long, S. P. (2001). Improved temperature response functions for models of Rubisco‐limited photosynthesis. Plant Cell & Environment, 24, 253–259. 10.1111/j.1365-3040.2001.00668.x DOI

Ceulemans, R. , & Mousseau, M. (1994). Tansley review no 71 effects of elevated atmospheric CO2 on woody‐plants. New Phytologist, 127, 425–446. 10.1111/j.1469-8137.1994.tb03961.x DOI

Curtis, P. S. , & Wang, X. (1998). A meta‐analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia, 113, 299–313. 10.1007/s004420050 PubMed DOI

de Graaff, M. A. , van Groenigen, K. J. , Six, J. , Hungate, B. , & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta‐analysis. Global Change Biology, 12, 2077–2091. 10.1111/j.1365-2486.2006.01240.x DOI

DeLucia, E. H. , & Thomas, R. B. (2000). Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia, 122, 11–19. 10.1007/PL00008827 PubMed DOI

Drake, B. G. , Gonzalez‐Meler, M. A. , & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609–639. 10.1146/annurev.arplant.48.1.609 PubMed DOI

Dukes, J. S. , Chiariello, N. R. , Cleland, E. E. , Moore, L. A. , Shaw, M. R. , Thayer, S. , … Field, C. B. (2005). Responses of grassland production to single and multiple global environmental changes. PLOS Biology, 3, 1829–1837. 10.1371/journal.pbio.0030319 PubMed DOI PMC

Farquhar, G. D. , Caemmerer, S. , & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C‐3 species. Planta, 149, 78–90. 10.1007/BF00386231 PubMed DOI

Fiala, K. , Tůma, I. , Holub, P. , & Jandák, J. (2005). The role of Calamagrostis communities in preventing soil acidification and base cation losses in a deforested mountain area affected by acid deposition. Plant and Soil, 268, 35–49. 10.1007/s11104-004-0185-8 DOI

Fiala, K. , Tůma, I. , Holub, P. , Tesařová, M. , Jandák, J. , & Pávková, A. (2001). Importance of grass cover in reduction of negative processes in soil affected by air pollution. Rostlinná Výroba, 47, 377–382.

Gilbert, B. , & Lechowicz, M. J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America, 101, 7651–7656. 10.1073/pnas.0400814101 PubMed DOI PMC

Gilliam, F. S. , & Roberts, M. R. (2003). The herbaceous layer in forests of eastern North America. Oxford, UK: Oxford University Press.

Godefroid, S. , Rucquoij, S. , & Koedam, N. (2005). To what extent do forest herbs recover after clearcutting in beech forest? Forest Ecology and Management, 210, 39–53. 10.1016/j.foreco.2005.02.020 DOI

Guehl, J. M. , Picon, C. , Aussenac, G. , & Gross, P. (1994). Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiology, 14, 707–724. 10.1093/treephys/14.7-8-9.707 PubMed DOI

Harley, P. C. , Thomas, R. B. , Reynolds, J. F. , & Strain, B. R. (1992). Modelling photosynthesis of cotton grown in elevated CO2 . Plant Cell & Environment, 15, 271–282. 10.1111/j.1365-3040.1992.tb00974.x DOI

Hättenschwiler, S. (2001). Tree seedling growth in natural deep shade: Functional traits related to interspecific variation in response to elevated CO2 . Oecologia, 129, 31–42. 10.1007/s004420100699 PubMed DOI

Hättenschwiler, S. , & Körner, C. (1996). Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystem. Oecologia, 106, 172–180. 10.1007/BF00328596 PubMed DOI

Hättenschwiler, S. , & Körner, C. (2000). Tree seedling responses to in‐situ CO2‐enrichment differ among species and depend on understorey light availability. Global Change Biology, 6, 213–226. 10.1046/j.1365-2486.2000.00301.x DOI

Jablonski, L. M. , Wang, X. , & Curtis, P. S. (2002). Plant reproduction under elevated CO2 conditions: A meta‐analysis of reports on 79 crop and wild species. New Phytologist, 156, 9–26. 10.1046/j.1469-8137.2002.00494.x DOI

Kelly, A. A. , van Erp, H. , Quettier, A. L. , Shaw, E. , Menard, G. , Kurup, S. , & Eastmond, P. J. (2013). The SUGAR‐DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis . Plant Physiology, 162, 1282–1289. 10.1104/pp.113.219840 PubMed DOI PMC

Kerstiens, G. (1998). Shade‐tolerance as a predictor of responses to elevated CO2 in trees. Physiologia Plantarum, 102, 472–480. 10.1034/j.1399-3054.1998.1020316.x DOI

Kerstiens, G. (2001). Meta‐analysis of the interaction between shade‐tolerance, light environment and growth response of woody species to elevated CO2 . Acta Oecologica, 22, 61–69. 10.1016/S1146-609X(00)01096-1 DOI

Kim, D. , Oren, R. , & Qian, S. S. (2016). Response to CO2 enrichment of understory vegetation in the shade of forest. Global Change Biology, 22, 944–956. 10.1111/gcb.13126 PubMed DOI

Košvancová, M. , Urban, O. , Šprtová, M. , Hrstka, M. , Kalina, J. , Tomášková, I. , … Marek, M. V. (2009). Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177, 123–130. 10.1016/j.plantsci.2009.04.005 DOI

Kubiske, M. E. , & Pregitzer, K. S. (1996). Effects of elevated CO2 and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology, 16, 351–358. 10.1093/treephys/16.3.351 PubMed DOI

Leakey, A. D. B. , Ainsworth, E. A. , Bernacchi, C. J. , Rogers, A. , Long, S. P. , & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60, 2859–2876. 10.1093/jxb/erp096 PubMed DOI

Lichtenthaler, H. K. , Ač, A. , Marek, M. V. , Kalina, J. , & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45, 577–588. 10.1016/j.plaphy.2007.04.006 PubMed DOI

Marek, M. V. , Urban, O. , Šprtová, M. , Pokorný, R. , Rosová, Z. , & Kulhavý, J. (2002). Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long‐term impact of elevated CO2 concentration. Photosynthetica, 40, 259–267. 10.1023/A:1021306010135 DOI

Naumburg, E. , & Ellsworth, D. S. (2000). Photosynthesis sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia, 122, 163–174. 10.1007/PL00008844 PubMed DOI

Niklaus, P. A. , & Körner, C. (2004). Synthesis of a six‐year study of calcareous grassland responses to in situ CO2 enrichment. Ecological Monographs, 74, 491–511. 10.1890/03-4047 DOI

Nilsson, M. C. , & Wardle, D. A. (2005). Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421–428. 10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2 DOI

Norby, R. J. , DeLucia, E. H. , Gielen, B. , Calfapietra, C. , Giardina, C. P. , King, J. S. , … Oren, R. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18052–18056. 10.1073/pnas.0509478102 PubMed DOI PMC

Norby, R. J. , Warren, J. M. , Iversen, C. M. , Medlyn, B. E. , & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368–19373. 10.1073/pnas.1006463107 PubMed DOI PMC

Osborne, C. P. , LaRoche, J. , Garcia, R. L. , Kimball, B. A. , Wall, G. W. , Pinter, P. J. , … Long, S. P. (1998). Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2? Analysis of a wheat crop under free‐air CO2 enrichment. Plant Physiology, 117, 1037–1045. 10.1104/pp.117.3.1037 PubMed DOI PMC

Pendall, E. , Osanai, Y. , Williams, A. L. , & Hovenden, M. J. (2003). Soil carbon storage under simulated climate change is mediated by plant functional type. Global Change Biology, 17, 505–514. 10.1111/j.1365-2486.2010.02296.x DOI

Poorter, H. (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio, 104(105), 77–97. 10.1007/BF00048146 DOI

Poorter, H. , & Navas, M. L. (2003). Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytologist, 157, 175–198. 10.1046/j.1469-8137.2003.00680.x PubMed DOI

Poorter, H. , Niinemets, Ü. , Ntagkas, N. , Siebenkäs, A. , Mäenpää, M. , Matsubara, S. , & Pons, T. L. (2019). A meta‐analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073–1105. 10.1111/nph.15754 PubMed DOI

Rajsnerová, P. , Klem, K. , Holub, P. , Novotná, K. , Večeřová, K. , Kozáčiková, M. , … Urban, O. (2015). Morphological, biochemical and physiological traits of upper and lower canopy leaves of European beech tend to converge with increasing altitude. Tree Physiology, 35, 47–60. 10.1093/treephys/tpu104 PubMed DOI

Rogers, H. H. , Peterson, C. M. , McCrimmon, J. N. , & Cure, J. D. (1992). Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell & Environment, 15, 749–752. 10.1111/j.1365-3040.1992.tb01018.x DOI

Royer, P. D. , Cobb, N. S. , Clifford, M. J. , Huang, C. Y. , Breshears, D. D. , Adams, H. D. , & Villegas, J. C. (2011). Extreme climatic event‐triggered overstorey vegetation loss increases understorey solar input regionally: Primary and secondary ecological implications. Journal of Ecology, 99, 714–723. 10.1111/j.1365-2745.2011.01804.x DOI

Šigut, L. , Holišova, P. , Klem, K. , Šprtova, M. , Calfapietra, C. , Marek, M. V. , … Urban, O. (2015). Does long‐term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature? Annals of Botany, 116, 929–939. 10.1093/aob/mcv043 PubMed DOI PMC

Springer, C. J. , & Thomas, R. B. (2007). Photosynthetic responses of forest understory tree species to long‐term exposure to elevated carbon dioxide concentration at the Duke Forest FACE experiment. Tree Physiology, 27, 25–32. 10.1093/treephys/27.1.25 PubMed DOI

Tschaplinski, T. J. , Stewart, D. B. , Hanson, P. J. , & Norby, R. J. (1995). Interactions between drought and elevated CO2 on growth and gas exchange of seedlings of three deciduous tree species. New Phytologist, 129, 63–71. 10.1111/j.1469-8137.1995.tb03010.x PubMed DOI

Urban, O. (2003). Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41, 9–20. 10.1023/A:1025891825050 DOI

Urban, O. , Janouš, D. , Acosta, M. , Czerný, R. , Marková, I. , Navrátil, M. , … Marek, M. V. (2007). Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13, 157–168. 10.1111/j.1365-2486.2006.01265.x DOI

Urban, O. , Janouš, D. , Pokorný, R. , Marková, I. , Pavelka, M. , Fojtík, Z. , … Marek, M. V. (2001). Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39, 395–401. 10.1023/A:1015134427592 DOI

Urban, O. , Klem, K. , Holišová, P. , Šigut, L. , Šprtová, M. , Teslová‐Navrátilová, P. , … Grace, J. (2014). Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions. Environmental Pollution, 185, 271–280. 10.1016/j.envpol.2013.11.009 PubMed DOI

Valladares, F. , Laanisto, L. , Niinemets, Ü. , & Zavala, M. A. (2016). Shedding light on shade: Ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9(3), 237–251. 10.1080/17550874.2016.1210262 DOI

von Caemmerer, S. (2000). Biochemical Models of Leaf Photosynthesis. Collingwood, ON: CSIRO Publishing.

Wang, A. , Lam, S. K. , Hao, X. , Li, F. Y. , Zong, Y. , Wang, H. , & Li, P. (2018). Elevated CO2 reduces the adverse effects of drought stress on a high‐yielding soybean (Glycine max (L.) Merr.) cultivar by increasing water use efficiency. Plant Physiology and Biochemistry, 132, 660–665. 10.1016/j.plaphy.2018.10.016 PubMed DOI

Way, D. A. , Oren, R. , & Kroner, Y. (2015). The space‐time continuum: The effects of elevated CO2 and temperature on trees and the importance of scaling. Plant Cell & Environment, 38, 991–1007. 10.1111/pce.12527 PubMed DOI

Würth, M. K. R. , Winter, K. , & Körner, C. (1998). In situ responses to elevated CO2 in tropical forest understorey plants. Functional Ecology, 12, 886–895. 10.1046/j.1365-2435.1998.00278.x DOI

Xu, L. , & Baldocchi, D. D. (2003). Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology, 23, 865–877. 10.1093/treephys/23.13.865 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...