No ontogenetic shift in the realised trophic niche but in Batesian mimicry in an ant-eating spider
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
31988373
PubMed Central
PMC6985134
DOI
10.1038/s41598-020-58281-3
PII: 10.1038/s41598-020-58281-3
Knihovny.cz E-resources
- MeSH
- Biological Ontologies MeSH
- Adaptation, Biological physiology MeSH
- Biological Evolution MeSH
- Ecosystem MeSH
- Ants MeSH
- Biological Mimicry physiology MeSH
- Spiders metabolism physiology MeSH
- Predatory Behavior physiology MeSH
- Selection, Genetic genetics MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
In predators an ontogenetic trophic shift includes change from small to large prey of several different taxa. In myrmecophagous predators that are also mimics of ants, the ontogenetic trophic shift should be accompanied by a parallel mimetic change. Our aim was to test whether ant-eating jumping spider, Mexcala elegans, is myrmecomorphic throughout their ontogenetic development, and whether there is an ontogenetic shift in realised trophic niche and their mimetic models. We performed field observations on the association of Mexcala with ant species and investigated the natural prey of the ontogenetic classes by means of molecular methods. Then we measured the mimetic similarity of ontogenetic morphs to putative mimetic models. We found Mexcala is an inaccurate mimic of ants both in the juvenile and adult stages. During ontogenesis it shifts mimetic models. The mimetic similarity was rather superficial, so an average bird predator should distinguish spiders from ants based on colouration. The realised trophic niche was narrow, composed mainly of ants of different species. There was no significant difference in the prey composition between ontogenetic stages. Females were more stenophagous than juveniles. We conclude that Mexcala is an ant-eating specialist that reduces its prey spectrum and shifts ant models during ontogenesis.
See more in PubMed
Begon, M., Mortimer, M. & Thompson, D. J. Population ecology: a unified study of animals and plants (John Wiley & Sons, 2009).
Griffiths D. Foraging costs and relative prey size. Am. Nat. 1980;116:743–752. doi: 10.1086/283666. DOI
Nakazawa T, Ohba S, Ushio M. Predator-prey body size relationships when predators can consume prey larger than themselves. Biol. Lett. 2013;9:20121193. doi: 10.1098/rsbl.2012.1193. PubMed DOI PMC
Turner M. Diet and feeding phenology of the green lynx spider, Peucetia viridans (Araneae: Oxyopidae) J. Arachnol. 1979;7:149–154.
Pekár S, Toft S. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90(3):744–761. doi: 10.1111/brv.12133. PubMed DOI
Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z. David and the Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften. 2014;101(7):533–540. doi: 10.1007/s00114-014-1189-8. PubMed DOI
Eberhard WG. Chrosiothes tonala (Araneae, Theridiidae): a web-building spider specializing on termites. Psyche. 1991;98:7–19. doi: 10.1155/1991/28909. DOI
Heller, G. Zur Biologie der ameisenfressenden Spinne Callilepis nocturna Linnaeus 1758 (Aranea, Drassodidae). PhD thesis (Johannes Gutenberg-Universitat, Mainz, 1974).
Eberhard WG. The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae) Psyche. 1980;87:143–169. doi: 10.1155/1980/81062. DOI
Cooper D, Williamson A, Williamson C. Deadly deception. GEO. 1990;12:87–95.
Yeargan KV, Quate LW. Adult male bolas spiders retain juvenile hunting tactics. Oecologia. 1997;112:572–576. doi: 10.1007/s004420050347. PubMed DOI
Pekár S, Bilde T, Martišová M. Intersexual trophic niche partitioning in an ant-eating spider (Araneae: Zodariidae) PLoS One. 2011;6(1):e14603. doi: 10.1371/journal.pone.0014603. PubMed DOI PMC
Castanho LM, Oliveira PS. Biology and behaviour of the neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. J. Zool. 1997;242:643–650. doi: 10.1111/j.1469-7998.1997.tb05818.x. DOI
Pekár S, Král J. Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): how Zodarion deceives ants. Biol. J. Linn. Soc. 2002;75(4):517–532. doi: 10.1046/j.1095-8312.2002.00043.x. DOI
McIver JD, Stonedahl G. Myrmecomorphy: Morphological and behavioral mimicry of ants. Annu. Rev. Entomol. 1993;38:351–379. doi: 10.1146/annurev.en.38.010193.002031. DOI
Mathew AP. The life-history of the spider (Myrmarachne plataleoides) (Cambr.) a mimic of the Indian red ant. J. Bombay Nat. Hist. Soc. 1934;37:369–374.
Edmunds M. On the association between Myrmarachne spp. (Salticidae) and ants. Bull. Br. Arachnol. Soc. 1978;4:149–160.
Ceccarelli FS, Crozier RH. Dynamics of the evolution of Batesian mimicry: molecular phylogenetic analysis of ant-mimicking Myrmarachne (Araneae: Salticidae) species and their ant models. J. Evol. Biol. 2007;20:286–295. doi: 10.1111/j.1420-9101.2006.01199.x. PubMed DOI
Wesołowska W, Haddad CR. Jumping spiders (Araneae: Salticidae) of the Ndumo Game Reserve, Maputaland, South Africa. Afr. Invertebr. 2009;50:13–103. doi: 10.5733/afin.050.0102. DOI
Pekár S, Haddad CR. Trophic strategy of ant-eating Mexcala elegans (Araneae: Salticidae): Looking for evidence of evolution of prey-specialization. J. Arachnol. 2011;39(1):133–138. doi: 10.1636/Hi10-56.1. DOI
Symondson WOC. Molecular identification of prey in predator diets. Mol. Ecol. 2002;11:627–641. doi: 10.1046/j.1365-294X.2002.01471.x. PubMed DOI
Edmunds M. Why are there good and poor mimics? Biol. J. Linn. Soc. 2000;70:459–466. doi: 10.1111/j.1095-8312.2000.tb01234.x. DOI
Pekár S, Petráková L, Bulbert MW, Whiting MJ, Herberstein ME. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. eLife. 2017;6:e22089. doi: 10.7554/eLife.22089. PubMed DOI PMC
Haddad CR, Louw SvdM. A redescription of Merenius alberti Lessert, 1923 (Araneae: Corinnidae), with remarks on colour polymorphism and its relationship to ant models. Afr. Invertebr. 2012;53:571–591. doi: 10.5733/afin.053.0213. DOI
Haddad, C. R. Advances in the systematics and ecology of African Corinnidae spiders (Arachnida: Araneae), with emphasis on the Castianeirinae. PhD thesis (University of the Free State, Bloemfontein, 2012).
Haddad CR. A revision of the ant-like sac spider genus Apochinomma Pavesi, 1881 (Araneae: Corinnidae) in the Afrotropical Region. J. Nat. Hist. 2013;47:2493–2529. doi: 10.1080/00222933.2013.791933. DOI
Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, Oxford, 2012).
Oliveira PS, Sazima I. Ant-hunting behaviour in spiders with emphasis on Strophius nigricans (Thomisidae) Bull. Br. Arachnol. Soc. 1985;6:309–312.
Brandon-Mong GJ, et al. DNA metabarcoding of insects and allies: an evaluation of primers and pipelines. Bull. Entomol. Res. 2015;105:717–727. doi: 10.1017/S0007485315000681. PubMed DOI
Piñol J, Mir G, Gomez-Polo G, Agustí N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 2015;15:819–830. doi: 10.1111/1755-0998.12355. PubMed DOI
Martišová M, Bilde T, Pekár S. Sex-specific kleptoparasitic foraging in ant-eating spiders. Anim. Behav. 2009;78(5):1115–1118. doi: 10.1016/j.anbehav.2009.07.025. DOI
Pekár S, Líznarová E, Bočánek O, Zdráhal Z. Venom of prey-specialised spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87:1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI
Pekár S, et al. Z. Venom gland size and venom complexity – essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 2018;27(21):4257–4269. doi: 10.1111/mec.14859. PubMed DOI
Michálek O, Petráková L, Pekár S. Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecol. Evol. 2017;7(8):2756–2766. doi: 10.1002/ece3.2812. PubMed DOI PMC
García LF, Viera C, Pekár S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 2018;105:30. doi: 10.1007/s00114-018-1555-z. PubMed DOI
Yan J, Fine JP. Estimating equations for association structures. Statistics Med. 2004;23:859–880. doi: 10.1002/sim.1650. PubMed DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2017).
Pekár S, Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124(2):86–93. doi: 10.1111/eth.12713. DOI
Ježek, J. Similarity measurement of spiders and ants. MSc Thesis (Masaryk University, Brno, 2015).
Wheeler, B. & Torchiano, B. lmPerm: Permutation tests for linear models. R package version 2.1.0. https://CRAN.R-project.org/package=lmPerm (2016).
Maia R, Eliason CM, Bitton P-P, Doucet SM, Shawkey MD. pavo: an R Package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 2013;4(10):609–613.
Gajdoš, P. & Krištín, A. Spiders (Araneae) as bird food. In Proceedings of the 16th European Colloquium of Arachnology (ed. Zabka, M.) 91–105 (Siedlce, 1997).
Vorobyev M, Osorio D, Bennett A, Marshall N, Cuthill I. Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A. 1998;183(5):621–633. doi: 10.1007/s003590050286. PubMed DOI
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3(5):294–299. PubMed
Pekár S, Petráková L, Šedo O, Korenko S, Zdráhal Z. Trophic niche, capture efficiency, and venom profiles of six sympatric ant-eating spider species (Araneae: Zodariidae) Mol. Ecol. 2018;27:1053–1064. doi: 10.1111/mec.14485. PubMed DOI
Zeale MRK, et al. for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Res. 2011;11(2):236–244. doi: 10.1111/j.1755-0998.2010.02920.x. PubMed DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Rice P, Longden I, Bleasby A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000;16(6):276–277. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;2:e593. doi: 10.7717/peerj.593. PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6. Mol. Biol. Evol. 2013;30(12):2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Pekár, S. & Brabec, M. Modern Analysis of Biological Data. Generalised Linear Models in R (Masaryk University Press, Brno, 2016).
Hurlbert SH. The measurement of niche overlap and some relatives. Ecology. 1978;59(1):67–77. doi: 10.2307/1936632. DOI