Bioresorbable scaffold implantation in STEMI patients: 5 years imaging subanalysis of PRAGUE-19 study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu klinická studie, časopisecké články, práce podpořená grantem
PubMed
32000796
PubMed Central
PMC6993315
DOI
10.1186/s12967-020-02230-1
PII: 10.1186/s12967-020-02230-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bioresorbable scaffold, Long-term follow-up, Optical coherence tomography, Quantitative coronary angiography, STEMI,
- MeSH
- infarkt myokardu s elevacemi ST úseků * diagnostické zobrazování chirurgie MeSH
- koronární angiografie MeSH
- koronární angioplastika * MeSH
- lidé MeSH
- protézy - design MeSH
- stenty uvolňující léky * MeSH
- vstřebatelné implantáty MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- klinická studie MeSH
- práce podpořená grantem MeSH
BACKGROUND: Bioresorbable scaffold (BRS) Absorb™ clinical use has been stopped due to higher rate of device thrombosis. Scaffold struts persist longer than 2 years in the vessel wall. Second generation devices are being developed. This study evaluates long-term invasive imaging in STEMI patients. METHODS: PRAGUE-19 study is an academic study enrolling consecutive STEMI patients with intention to implant Absorb™ BRS. A total of 83 STEMI patients between December 2012 and March 2014 fulfilled entry criteria. Coronary angiography and optical coherence tomography at 5 year follow-up was performed in 25 patients. RESULTS: Primary combined clinical endpoint (death, myocardial infarction or target vessel revascularization) occurred in 12.6% during the five-year follow-up with overall mortality 6.3%. Definite scaffold thrombosis occurred in 2 patients in the early phase after BRS implantation. Quantitative coronary angiography after 5 years demonstrated low late lumen loss of 0.11 ± 0.35 mm with binary restenosis rate of 0%. Optical coherence tomography demonstrated complete resorption of scaffold struts and mean lumen diameter of 3.25 ± 0.30 and 3.22 ± 0.49 (P = 0.73) at baseline and after 5 years, respectively. Three patients developed small coronary artery aneurysm in the treated segment. CONCLUSION: Invasive imaging results 5 years after BRS implantation in STEMI showed complete resorption of scaffold struts and stable lumen vessel diameter. Trial registration ISRCTN43696201 (retrospectivelly registred, June 7th, 2019). https://www.isrctn.com/ISRCTN43696201.
Zobrazit více v PubMed
Cassese S, Byrne RA, Juni P, et al. Midterm clinical outcomes with everolimus-eluting bioresorbable scaffolds versus everolimus-eluting metallic stents for percutaneous coronary interventions: a meta-analysis of randomised trials. EuroIntervention. 2018;13(13):1565–1573. doi: 10.4244/EIJ-D-17-00492. PubMed DOI
Ali ZA, Gao R, Kimura T, et al. Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the ABSORB randomized trials. Circulation. 2018;137(5):464–479. doi: 10.1161/CIRCULATIONAHA.117.031843. PubMed DOI
Ali ZA, Serruys PW, Kimura T, et al. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet. 2017;390(10096):760–772. doi: 10.1016/S0140-6736(17)31470-8. PubMed DOI
Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. EuroIntervention. 2019;14(14):1435–1534. doi: 10.4244/EIJY19M01_01. PubMed DOI
Stone GW, Ellis SG, Gori T, et al. Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018;392(10157):1530–1540. doi: 10.1016/S0140-6736(18)32283-9. PubMed DOI
Dudek D, Rzeszutko L, Onuma Y, et al. Vasomotor response to nitroglycerine over 5 years follow-up after everolimus-eluting bioresorbable scaffold implantation. JACC Cardiovasc Interv. 2017;10(8):786–795. doi: 10.1016/j.jcin.2016.12.020. PubMed DOI
Serruys PW, Ormiston J, van Geuns RJ, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5-year follow-up. J Am Coll Cardiol. 2016;67(7):766–776. doi: 10.1016/j.jacc.2015.11.060. PubMed DOI
Simsek C, Karanasos A, Magro M, et al. Long-term invasive follow-up of the everolimus-eluting bioresorbable vascular scaffold: five-year results of multiple invasive imaging modalities. EuroIntervention. 2016;11(9):996–1003. PubMed
Kocka V, Maly M, Tousek P, et al. Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study 'Prague 19'. Eur Heart J. 2014;35(12):787–794. doi: 10.1093/eurheartj/eht545. PubMed DOI PMC
Tousek P, Kocka V, Maly M, et al. Long-term follow-up after bioresorbable vascular scaffold implantation in STEMI patients: PRAGUE-19 study update. EuroIntervention. 2016;12(1):23–29. doi: 10.4244/EIJV12I1A5. PubMed DOI
Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation. 2007;115(17):2344–2351. doi: 10.1161/CIRCULATIONAHA.106.685313. PubMed DOI
Aoki J, Kirtane A, Leon MB, et al. Coronary artery aneurysms after drug-eluting stent implantation. JACC Cardiovasc Interv. 2008;1(1):14–21. doi: 10.1016/j.jcin.2007.10.004. PubMed DOI
Okamura T, Gonzalo N, Gutierrez-Chico JL, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention. 2010;6(3):371–379. doi: 10.4244/EIJV6I1A62. PubMed DOI
Garcia-Garcia HM, Serruys PW, Campos CM, et al. Assessing bioresorbable coronary devices: methods and parameters. JACC Cardiovasc Imaging. 2014;7(11):1130–1148. doi: 10.1016/j.jcmg.2014.06.018. PubMed DOI
Kocka V, Tousek P, Widimsky P. Absorb bioresorbable stents for the treatment of coronary artery disease. Expert Rev Med Devices. 2015;12(5):545–557. doi: 10.1586/17434440.2015.1080119. PubMed DOI
Tousek P, Kocka V, Maly M, et al. Neointimal coverage and late apposition of everolimus-eluting bioresorbable scaffolds implanted in the acute phase of myocardial infarction: OCT data from the PRAGUE-19 study. Heart Vessels. 2016;31(6):841–845. doi: 10.1007/s00380-015-0679-8. PubMed DOI
Sabate M, Windecker S, Iniguez A, et al. Everolimus-eluting bioresorbable stent vs durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J. 2016;37(3):229–240. doi: 10.1093/eurheartj/ehv500. PubMed DOI PMC
Katagiri Y, Onuma Y, Asano T, et al. Three-year follow-up of the randomised comparison between an everolimus-eluting bioresorbable scaffold and a durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction (TROFI II trial) EuroIntervention. 2018;14(11):e1224–e1226. doi: 10.4244/EIJ-D-18-00839. PubMed DOI
Byrne RA, Alfonso F, Schneider S, et al. Prospective, randomized trial of bioresorbable scaffolds vs everolimus-eluting stents in patients undergoing coronary stenting for myocardial infarction: the Intracoronary Scaffold Assessment a Randomized evaluation of Absorb in Myocardial Infarction (ISAR-Absorb MI) trial. Eur Heart J. 2019;40(2):167–176. doi: 10.1093/eurheartj/ehy710. PubMed DOI
Brugaletta S, Gori T, Low AF, et al. ABSORB bioresorbable vascular scaffold vs everolimus-eluting metallic stent in ST-segment elevation myocardial infarction (BVS EXAMINATION study): 2-Year results from a propensity score matched comparison. Int J Cardiol. 2016;214:483–484. doi: 10.1016/j.ijcard.2016.04.016. PubMed DOI
Brugaletta S, Gori T, Low AF, et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction) JACC Cardiovasc Interv. 2015;8(1 Pt B):189–197. doi: 10.1016/j.jcin.2014.10.005. PubMed DOI
Gori T, Munzel T. First evidence of complete resorption 4 years after bioresorbable scaffold implantation in the setting of ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2017;10(2):200–202. doi: 10.1016/j.jcin.2016.10.022. PubMed DOI
Moriyama N, Shishido K, Tobita K, et al. Persistent bioresorbable vascular scaffold by optical coherence tomography imaging at 5 years. JACC Cardiovasc Interv. 2017;10(2):e11–e13. doi: 10.1016/j.jcin.2016.11.008. PubMed DOI
Kawamori H, Shite J, Shinke T, et al. Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovasc Imaging. 2013;14(9):865–875. doi: 10.1093/ehjci/jes299. PubMed DOI PMC
Shimamura K, Kubo T, Akasaka T, et al. Outcomes of everolimus-eluting stent incomplete stent apposition: a serial optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2015;16(1):23–28. doi: 10.1093/ehjci/jeu174. PubMed DOI
Im E, Hong SJ, Ahn CM, et al. Long-term clinical outcomes of late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. J Am Heart Assoc. 2019;8(7):e011817. doi: 10.1161/JAHA.118.011817. PubMed DOI PMC
Joo HJ, Yu C, Choi R, et al. Clinical outcomes of patients with coronary artery aneurysm after the first generation drug-eluting stent implantation. Catheter Cardiovasc Interv. 2018;92(3):E235–E245. doi: 10.1002/ccd.27429. PubMed DOI
Gori T, Jansen T, Weissner M, et al. Coronary evaginations and peri-scaffold aneurysms following implantation of bioresorbable scaffolds: incidence, outcome, and optical coherence tomography analysis of possible mechanisms. Eur Heart J. 2016;37(26):2040–2049. doi: 10.1093/eurheartj/ehv581. PubMed DOI
Rottlander D, Schneider T, Degen H, et al. Lesion preparation with cutting balloon angioplasty is associated with coronary aneurysm formation in polylactide bioresorbable vascular scaffold implantation. EuroIntervention. 2017;13(12):e1483–e1486. doi: 10.4244/EIJ-D-17-00375. PubMed DOI
Nakatani S, Ishibashi Y, Suwannasom P, et al. Development and receding of a coronary artery aneurysm after implantation of a fully bioresorbable scaffold. Circulation. 2015;131(8):764–767. doi: 10.1161/CIRCULATIONAHA.114.014257. PubMed DOI
ISRCTN
ISRCTN43696201