Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine

. 2020 Jan 30 ; 20 (3) : . [epub] 20200130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32019220

Grantová podpora
2017/27/B/ST6/01989 Narodowe Centrum Nauki
STRATEGMED2/269343/18/ NCBR/2016 Narodowe Centrum Badań i Rozwoju

Atrial fibrillation (AF) is a serious heart arrhythmia leading to a significant increase of the risk for occurrence of ischemic stroke. Clinically, the AF episode is recognized in an electrocardiogram. However, detection of asymptomatic AF, which requires a long-term monitoring, is more efficient when based on irregularity of beat-to-beat intervals estimated by the heart rate (HR) features. Automated classification of heartbeats into AF and non-AF by means of the Lagrangian Support Vector Machine has been proposed. The classifier input vector consisted of sixteen features, including four coefficients very sensitive to beat-to-beat heart changes, taken from the fetal heart rate analysis in perinatal medicine. Effectiveness of the proposed classifier has been verified on the MIT-BIH Atrial Fibrillation Database. Designing of the LSVM classifier using very large number of feature vectors requires extreme computational efforts. Therefore, an original approach has been proposed to determine a training set of the smallest possible size that still would guarantee a high quality of AF detection. It enables to obtain satisfactory results using only 1.39% of all heartbeats as the training data. Post-processing stage based on aggregation of classified heartbeats into AF episodes has been applied to provide more reliable information on patient risk. Results obtained during the testing phase showed the sensitivity of 98.94%, positive predictive value of 98.39%, and classification accuracy of 98.86%.

Zobrazit více v PubMed

Lau J.K., Lowres N., Neubeck L., Brieger D.B., Sy R.W., Galloway C.D., Albert D.E., Freedman S.B. iPhone ECG application for community screening to detect silent atrial fibrillation: A novel technology to prevent stroke. Int. J. Cardiol. 2013;165:193–194. doi: 10.1016/j.ijcard.2013.01.220. PubMed DOI

Grond M., Jauss M., Hamann G., Stark E., Veltkamp R., Nabavi D., Horn M., Weimar C., Köhrmann M., Wachter R., et al. Improved Detection of Silent Atrial Fibrillation Using 72-Hour Holter ECG in Patients With Ischemic Stroke: A Prospective Multicenter Cohort Study. Stroke. 2013;44:3357–3364. doi: 10.1161/STROKEAHA.113.001884. PubMed DOI

Camm A.J. Atrial Fibrillation and Risk. Clin. Cardiol. 2012;35:S1–S2. doi: 10.1002/clc.21961. PubMed DOI PMC

Moody G. A new method for detecting atrial fibrillation using RR intervals. Comput. Cardiol. 1983:227–230.

Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215–e220. doi: 10.1161/01.CIR.101.23.e215. PubMed DOI

The MIT-BIH Atrial Fibrillation Database–PhysioNet. [(accessed on 20 May 2018)]; Available online: https://physionet.org/physiobank/database/afdb/

Fitzmaurice D.A., Hobbs F.R., Jowett S., Mant J., Murray E.T., Holder R., Raftery J.P., Bryan S., Davies M., Lip G.Y. Screening versus routine practice in detection of atrial fibrillation in patients aged 65 or over: Cluster randomised controlled trial. BMJ. 2007;335:383. doi: 10.1136/bmj.39280.660567.55. PubMed DOI PMC

Rawenwaaij-Arts C., Kallee L., Hopman J. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiologic interpretation, and clinical use. Circulation 1996; 93: 1043–1065. Intern. Med. 1993;118:436–447. PubMed

Desteghe L., Raymaekers Z., Lutin M., Vijgen J., Dilling-Boer D., Koopman P., Schurmans J., Vanduynhoven P., Dendale P., Heidbuchel H. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Ep Europace. 2016;19:29–39. PubMed

Haberman Z.C., Jahn R.T., Bose R., Tun H., Shinbane J.S., Doshi R.N., Chang P.M., Saxon L.A. Wireless Smartphone ECG Enables Large-Scale Screening in Diverse Populations. J. Cardiovasc. Electrophysiol. 2015;26:520–526. doi: 10.1111/jce.12634. PubMed DOI

Lee J., Reyes B.A., McManus D.D., Maitas O., Chon K.H. Atrial fibrillation detection using an iPhone 4S. IEEE Trans. Biomed. Eng. 2012;60:203–206. doi: 10.1109/TBME.2012.2208112. PubMed DOI

Vaid J., Poh M.Z., Saleh A., Kalantarian S., Poh Y.K.C., Rafael A., Ruskin J. Diagnostic accuracy of a novel mobile application (Cardiio Rhythm) for detecting atrial fibrillation. J. American Coll. Cardiol. 2015;65:A361. doi: 10.1016/S0735-1097(15)60361-8. DOI

Glotzer T.V., Hellkamp A.S., Zimmerman J., Sweeney M.O., Yee R., Marinchak R., Cook J., Paraschos A., Love J., Radoslavich G., et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST) Circulation. 2003;107:1614–1619. doi: 10.1161/01.CIR.0000057981.70380.45. PubMed DOI

Hindricks G., Pokushalov E., Urban L., Táborský M., Kuck K.-H., Lebedev D., Rieger G., Pürerfellner H., on behalf of the XPECT Trial Investigators Performance of a New Leadless Implantable Cardiac Monitor in Detecting and Quantifying Atrial Fibrillation Results of the XPECT Trial. Circ. Arrhythmia Electrophysiol. 2010;3:141–147. doi: 10.1161/CIRCEP.109.877852. PubMed DOI

Lake D.E., Moorman J.R. Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Circ. Physiol. 2011;300:H319–H325. doi: 10.1152/ajpheart.00561.2010. PubMed DOI

Babaeizadeh S., Gregg R.E., Helfenbein E.D., Lindauer J.M., Zhou S.H. Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 2009;42:522–526. doi: 10.1016/j.jelectrocard.2009.06.006. PubMed DOI

Christov G.B.I. Automatic detection of atrial fibrillation and flutter by wave rectification method. J. Med. Eng. Technol. 2001;25:217–221. doi: 10.1080/03091900110065942. PubMed DOI

Christov I., Bortolan G., Daskalov I. Sequential analysis for automatic detection of atrial fibrillation and flutter. Comput. Cardiol. 2001;28:293–296. PubMed

Hindricks G., Piorkowski C. Atrial fibrillation monitoring: mathematics meets real life. Circulatory. 2012;126:791–802. doi: 10.1161/CIRCULATIONAHA.112.124735. PubMed DOI

Hargittai S. Is it possible to detect atrial fibrillation by simply using RR intervals? Comput. Cardiol. 2014;41:897–900.

Slocum J., Sahakian A., Swiryn S. Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. J. Electrocardiol. 1992;25:1–8. doi: 10.1016/0022-0736(92)90123-H. PubMed DOI

Bonomi A., Schipper F., Eerikainen L., Margarito J., Aarts R., Babaeizadeh S., De Morree H., Dekker L. Atrial Fibrillation Detection Using Photo:plethysmography and Acceleration Data at the Wrist; Proceedings of the 2016 Computing in Cardiology Conference (CinC); Vancouver, BC, Canada. 11–14 September 2016; pp. 081–339.

Lu S., Zhao H., Ju K., Shin K., Lee M., Shelley K., Chon K.H. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J. Clin. Monit. Comput. 2008;22:23–29. doi: 10.1007/s10877-007-9103-y. PubMed DOI

Tamura T., Maeda Y., Sekine M., Yoshida M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics. 2014;3:282–302. doi: 10.3390/electronics3020282. DOI

Hurnanen T., Lehtonen E., Tadi M.J., Kuusela T., Kiviniemi T., Saraste A., Vasankari T., Airaksinen J., Koivisto T., Pankaala M. Automated Detection of Atrial Fibrillation Based on Time–Frequency Analysis of Seismocardiograms. IEEE J. Biomed. Heal. Inform. 2017;21:1233–1241. doi: 10.1109/JBHI.2016.2621887. PubMed DOI

Wrobel J., Jezewski J., Horoba K., Pawlak A., Czabanski R., Jezewski M., Porwik P. Medical Cyber-Physical System for Home Telecare of High-Risk Pregnancy: Design Challenges and Requirements. J. Med. Imaging Heal. Inform. 2015;5:1295–1301. doi: 10.1166/jmihi.2015.1532. DOI

Jezewski J., Pawlak A., Horoba K., Wrobel J., Czabanski R., Jezewski M. Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 2016;46:35–43. doi: 10.1016/j.micpro.2016.07.005. DOI

Roj D., Matonia A., Sobotnicka E., Wrobel J. Hardware design issues and functional requirements for smart wristband monitor of silent atrial fibrillation; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 596–600.

Logan B., Healey J. Robust detection of atrial fibrillation for a long term telemonitoring system. Comput. Cardiol. 2005;32:619–622.

Islam S., Ammour N., Alajlan N., Aboalsamh H. Rhythm-based heartbeat duration normalization for atrial fibrillation detection. Comput. Boil. Med. 2016;72:160–169. doi: 10.1016/j.compbiomed.2016.03.015. PubMed DOI

Ghodrati A., Murray B., Marinello S. RR interval analysis for detection of Atrial Fibrillation in ECG monitors; Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–24 August 2008; pp. 601–604. PubMed

Kennedy A., Finlay D.D., Guldenring D., Bond R.R., Moran K., McLaughlin J. Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification. J. Electrocardiol. 2016;49:871–876. doi: 10.1016/j.jelectrocard.2016.07.033. PubMed DOI

Tateno K., Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med. Boil. Eng. 2001;39:664–671. doi: 10.1007/BF02345439. PubMed DOI

Petrucci E., Balian V., Filippini G., Mainardi L. Atrial fibrillation detection algorithms for very long term ECG monitoring. Comput. Cardiol. 2005;32:623–626.

Lian J., Wang L., Muessig D. A Simple Method to Detect Atrial Fibrillation Using RR Intervals. Am. J. Cardiol. 2011;107:1494–1497. doi: 10.1016/j.amjcard.2011.01.028. PubMed DOI

Zhou X., Ding H., Ung B., Pickwell-MacPherson E., Zhang Y. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed. Eng. Online. 2014;13:18. doi: 10.1186/1475-925X-13-18. PubMed DOI PMC

Cui X., Chang E., Yang W.-H., Jiang B.C., Yang A.C., Peng C.-K. Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach. Entropy. 2017;19:677. doi: 10.3390/e19120677. DOI

Dash S., Chon K.H., Lu S., Raeder E.A. Automatic Real Time Detection of Atrial Fibrillation. Ann. Biomed. Eng. 2009;37:1701–1709. doi: 10.1007/s10439-009-9740-z. PubMed DOI

Andersen R.S., Poulsen E.S., Puthusserypady S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine; Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Jeju Island, Korea. 11–15 July 2017; pp. 2039–2042. PubMed

Nuryani N., Harjito B., Yahya I., Lestari A. Atrial fibrillation detection using support vector machine; Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT & IMECE); Surakarta, Indonesia. 4–5 November 2015; pp. 215–218.

Colloca R., Johnson A.E., Mainardi L., Clifford G.D. A support vector machine approach for reliable detection of atrial fibrillation events. Comput. Cardiol. 2013:1047–1050.

Yang T.-F., Devine B., Macfarlane P.W. Artificial neural networks for the diagnosis of atrial fibrillation. Med. Boil. Eng. 1994;32:615–619. doi: 10.1007/BF02524235. PubMed DOI

Artis S.G., Mark R.G., Moody G.B. Detection of atrial fibrillation using artificial neural networks; Proceedings of the Computers in Cardiology; Venice, Italy. 23–26 September 1991; pp. 173–176.

Petrėnas A., Marozas V., Sörnmo L. Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput. Boil. Med. 2015;65:184–191. doi: 10.1016/j.compbiomed.2015.01.019. PubMed DOI

Andersen R.S., Peimankar A., Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 2019;115:465–473. doi: 10.1016/j.eswa.2018.08.011. DOI

Faust O., Shenfield A., Kareem M., San T.R., Fujita H., Acharya U.R. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Boil. Med. 2018;102:327–335. doi: 10.1016/j.compbiomed.2018.07.001. PubMed DOI

Wrobel J., Matonia A., Horoba K., Jezewski J., Czabanski R., Pawlak A., Porwik P. Pregnancy Telemonitoring with Smart Control of Algorithms for Signal Analysis. J. Med. Imaging Heal. Inform. 2015;5:1302–1310. doi: 10.1166/jmihi.2015.1533. DOI

Jezewski J., Horoba K., Roj D., Wrobel J., Kupka T., Matonia A. Evaluating the fetal heart rate baseline estimation algorithms by their influence on detection of clinically important patterns. Biocybern. Biomed. Eng. 2016;36:562–573. doi: 10.1016/j.bbe.2016.06.003. DOI

Wrobel J., Roj D., Jezewski J., Horoba K., Kupka T., Jezewski M. Evaluation of the Robustness of Fetal Heart Rate Variability Measures to Low Signal Quality. J. Med. Imaging Heal. Inform. 2015;5:1311–1318. doi: 10.1166/jmihi.2015.1534. DOI

Mangasarian O.L., Musicant D.R. Lagrangian support vector machines. J. Mach. Learn. Res. 2001;1:161–177.

Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995;20:273–297. doi: 10.1007/BF00994018. DOI

Roj D., Wrobel J., Matonia A., Horoba K., Henzel N. Control and signal processing software embedded in smart wristband monitor of silent atrial fibrillation; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 585–590.

Wrobel J., Horoba K., Matonia A., Kupka T., Henzel N., Sobotnicka E. Optimizing the Automated Detection of Atrial Fibrillation Episodes in Long-term Recording Instrumentation; Proceedings of the 2018 25th International Conference “Mixed Design of Integrated Circuits and System” (MIXDES); Gdynia, Poland. 21–23 June 2018; pp. 460–464.

Henzel N., Wrobel J., Horoba K. Atrial fibrillation episodes detection based on classification of heart rate derived features; Proceedings of the 2017 MIXDES—24th International Conference “Mixed Design of Integrated Circuits and Systems”; Bydgoszcz, Poland. 22–24 June 2017; pp. 571–576.

Wróbel J., Horoba K., Pander T., Jeżewski J., Czabański R. Improving fetal heart rate signal interpretation by application of myriad filtering. Biocybern. Biomed. Eng. 2013;33:211–221. doi: 10.1016/j.bbe.2013.09.004. DOI

Jezewski M., Wrobel J., Horoba K., Gacek A., Henzel N., Leski J. The Prediction of Fetal Outcome by Applying Neural Network for Evaluation of CTG Records. In: Kurzynski M., Puchala E., Wozniak M., Zolnierek A., editors. Computer Recognition Systems 2. Advances in Soft Computing. Volume 45. Springer; Berlin/Heidelberg, Germany: 2007. pp. 532–541.

Jezewski J., Wrobel J., Matonia A., Horoba K., Martinek R., Kupka T., Jezewski M. Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation? Front. Physiol. 2017;8:305. doi: 10.3389/fphys.2017.00305. PubMed DOI PMC

Czabanski R., Jezewski M., Wrobel J., Horoba K., Jezewski J. A Neuro-Fuzzy Approach to the Classification of Fetal Cardiotocograms; IFMBE Proceedings of the 14th Nordic Baltic Conference on Biomedical Engineering and Medical Physics; Riga, Latvia. 16–20 June 2008; pp. 446–449.

Czabański R., Jeżewski J., Horoba K., Jeżewski M. Fetal state assessment using fuzzy analysis of fetal heart rate signals—Agreement with the neonatal outcome. Biocybern. Biomed. Eng. 2013;33:145–155. doi: 10.1016/j.bbe.2013.07.003. DOI

Matonia A., Jezewski J., Kupka T., Horoba K., Wrobel J., Gacek A. The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability. Med. Boil. Eng. 2006;44:393–403. doi: 10.1007/s11517-006-0054-0. PubMed DOI

Jezewski J., Matonia A., Kupka T., Roj D., Czabanski R. Determination of fetal heart rate from abdominal signals: Evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomed. Tech./Biomed. Eng. 2012;57:383–394. doi: 10.1515/bmt-2011-0130. PubMed DOI

Jezewski M., Czabanski R., Horoba K., Leski J. Clustering with Pairs of Prototypes to Support Automated Assessment of the Fetal State. Appl. Artif. Intell. 2016;30:572–589. doi: 10.1080/08839514.2016.1193718. DOI

Vapnik V. Statistical Learning Theory. John Wiley & Sons; New York, NY, USA: 1998.

Abe S. Support Vector Machines for Pattern Classification. Springer Science and Business Media LLC; London, UK: 2010. ISBN-13: 9781849960977.

Steinwart I., Christmann A. Support Vector Machines. Springer; New York, NY, USA: 2008.

Joachims T. Learning to Classify Text Using Support Vector Machines—Methods, Theory, and Algorithms. Kluwer Academic Publishers; Norvell, CA, USA: 2002.

Suykens J., Vandewalle J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999;9:293–300. doi: 10.1023/A:1018628609742. DOI

Tsang I.W., Kwok J.T., Cheung P.M. Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 2005;6:363–392.

Czabanski R., Jezewski M., Horoba K., Jezewski J., Leski J. Fuzzy Analysis of Delivery Outcome Attributes for Improving the Automated Fetal State Assessment. Appl. Artif. Intell. 2016;30:556–571. doi: 10.1080/08839514.2016.1193717. DOI

Jezewski M., Leski J., Czabanski R. An Attempt to Optimize the Cardiotocographic Signal Feature Set for Fetal State Assessment. J. Med. Imaging Heal. Inform. 2015;5:1364–1373. doi: 10.1166/jmihi.2015.1540. DOI

Jezewski M., Leski J.M. Nonlinear Extension of the IRLS Classifier Using Clustering with Pairs of Prototypes. In: Burduk R., Jackowski K., Kurzynski M., Wozniak M., Zolnierek A., editors. Advances in Intelligent Systems and Computing. Volume 226. Springer; Cham, Switzerland: Heidelberg, Germany: New York, NY, USA: 2013. pp. 121–130.

Dubitzky W., Granzow M., Berrar D. Fundamentals of Data Mining in Genomics and Proteomics. Springer Science & Business Media; New York, NY, USA: 2007. DOI

Picard R.R., Cook R.D. Cross-validation of regression models. J. Am. Stat. Assoc. 1984;79:575–583. doi: 10.1080/01621459.1984.10478083. DOI

Huang C., Ye S., Chen H., Li D., He F., Tu Y. A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng. 2010;58:1113–1119. doi: 10.1109/TBME.2010.2096506. PubMed DOI

Zhou X., Ding H., Wu W., Zhang Y. A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate. PLoS ONE. 2015;10:e0136544. doi: 10.1371/journal.pone.0136544. PubMed DOI PMC

Kumar M., Pachori R.B., Acharya U.R. Automated diagnosis of atrial fibrillation ECG signals using entropy features extracted from flexible analytic wavelet transform. Biocybern. Biomed. Eng. 2018;38:564–573. doi: 10.1016/j.bbe.2018.04.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...