Frequent Recurrences of Genital Herpes Are Associated with Enhanced Systemic HSV-Specific T Cell Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32047574
PubMed Central
PMC7003255
DOI
10.1155/2020/5640960
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Genital herpes simplex virus (HSV) infection is controlled by HSV-specific T cells in the genital tract, and the role of systemic T cell responses is not fully understood. Thus, we analysed T cell responses in patients with recurrent genital herpes (GH). METHODS: T cell responses to HSV-1 and HSV-2 native antigens and the expression of HLA-DR and CD38 molecules on circulating CD8+ T cells were analysed in adults with high frequency of GH recurrences (19 patients) and low frequency of GH recurrences (7 patients) and 12 HSV-2 seronegative healthy controls. The study utilized the interferon-γ Elispot assay for measurement of spot-forming cells (SFC) after ex vivo stimulation with HSV antigens and flow cytometry for analysis of the expression of activation markers in unstimulated T cells. RESULTS: The patients with high frequency of GH recurrences (mean number of recurrences of 13.3 per year) had significantly enhanced HSV-specific T cell responses than the HSV-2 seronegative healthy controls. Moreover, a trend of higher numbers of SFC was observed in these patients when compared with those with low frequency of GH recurrences (mean number of recurrences of 3.3 per year). Additionally, no differences in CD38 and HLA-DR expression on circulating CD8+ T cells were found among the study groups. CONCLUSIONS: Frequency of GH recurrences positively correlates with high numbers of systemic HSV-specific T cells.
Zobrazit více v PubMed
Wald A., Zeh J., Selke S., et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. New England Journal of Medicine. 2000;342(12):844–850. doi: 10.1056/nejm200003233421203. PubMed DOI
Rajcáni J., Durmanová V. Early expression of herpes simplex virus (HSV) proteins and reactivation of latent infection. Folia Microbiologica. 2000;45(1):7–28. doi: 10.1007/bf02817445. PubMed DOI
Zhu J., Koelle D. M., Cao J., et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. The Journal of Experimental Medicine. 2007;204(3):595–603. doi: 10.1084/jem.20061792. PubMed DOI PMC
Khanna K. M., Bonneau R. H., Kinchington P. R., Hendricks R. L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 2003;18(5):593–603. doi: 10.1016/s1074-7613(03)00112-2. PubMed DOI PMC
Koelle D. M., Corey L., Burke R. L., et al. Antigenic specificities of human CD4+ T-cell clones recovered from recurrent genital herpes simplex virus type 2 lesions. Journal of Virology. 1994;68(5):2803–2810. PubMed PMC
Franzen-Röhl E. Schepis D., Lagrelius M., et al. “Increased cell-mediated immune responses in patients with recurrent herpes simplex virus type 2 meningitis. Clinical and Vaccine Immunology. 2011;18(4):655–660. doi: 10.1128/cvi.00333-10. PubMed DOI PMC
Sheth P. M., Sunderji S., Shin L. Y. Y., et al. Coinfection with herpes simplex virus type 2 is associated with reduced HIV-specific T cell responses and systemic immune activation. The Journal of Infectious Diseases. 2008;197(10):1394–1401. doi: 10.1086/587697. PubMed DOI
Franzen-Röhl E., Schepis D., Atterfelt F., et al. Herpes simplex virus specific T cell response in a cohort with primary genital infection correlates inversely with frequency of subsequent recurrences. Sexually Transmitted Infections. 2017;93(3):169–174. doi: 10.1136/sextrans-2016-052811. PubMed DOI
Bartovska Z., Beran O., Rozsypal H., Holub M. Antiretroviral treatment of HIV infection does not influence HIV specific immunity but has an impact on non-specific immune activation. Current HIV Research. 2011;9(2):88–94. doi: 10.2174/157016211795569078. PubMed DOI
Calarota S. A., Baldanti F. Enumeration and characterization of human memory T cells by enzyme-linked immunospot assays. Clinical and Developmental Immunology. 2013;2013:8. doi: 10.1155/2013/637649.637649 PubMed DOI PMC
Addo M. M., Yu X. G., Rathod A., et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. Journal of Virology. 2003;77(3):2081–2092. doi: 10.1128/jvi.77.3.2081-2092.2003. PubMed DOI PMC
Beran O., Holub M., Špála J., et al. CD38 expression on CD8+ T cells in Human immunodeficiency virus 1-positive adults treated with HAART. Acta Virologica. 2003;47(2):121–124. PubMed
Nicoli F., Finessi V., Sicurella M., et al. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS One. 2013;8(11) doi: 10.1371/journal.pone.0077746.e77746 PubMed DOI PMC
Shin H., Iwasaki A. Generating protective immunity against genital herpes. Trends in Immunology. 2013;34(10):487–494. doi: 10.1016/j.it.2013.08.001. PubMed DOI PMC
Moss N. J., Magaret A., Laing K. J., et al. Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes. Journal of Virology. 2012;86(18):9952–9963. doi: 10.1128/jvi.00829-12. PubMed DOI PMC
Torti N., Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses. 2012;4(7):1116–1143. doi: 10.3390/v4071116. PubMed DOI PMC
Sheridan B. S., Knickelbein J. E., Hendricks R. L. CD8 T cells and latent herpes simplex virus type 1: keeping the peace in sensory ganglia. Expert Opinion on Biological Therapy. 2007;7(9):1323–1331. doi: 10.1517/14712598.7.9.1323. PubMed DOI
Posavad C. M., Remington M., Mueller D. E., et al. Detailed characterization of T cell responses to herpes simplex virus-2 in immune seronegative persons. The Journal of Immunology. 2010;184(6):3250–3259. doi: 10.4049/jimmunol.0900722. PubMed DOI PMC
Belshe R. B., Leone P. A., Bernstein D. I., et al. Efficacy results of a trial of a herpes simplex vaccine. New England Journal of Medicine. 2012;366(1):34–43. doi: 10.1056/nejmoa1103151. PubMed DOI PMC
Rompalo A. Preventing sexually transmitted infections: back to basics. Journal of Clinical Investigation. 2011;121(12):4580–4583. doi: 10.1172/jci61592. PubMed DOI PMC
Braun D. K., Pereira L., Norrild B., Roizman B. Application of denatured, electrophoretically separated, and immobilized lysates of herpes simplex virus-infected cells for detection of monoclonal antibodies and for studies of the properties of viral proteins. Journal of Virology. 1983;46(1):103–112. doi: 10.1128/jvi.46.1.103-112.1983. PubMed DOI PMC
Maecker H. T., Ghanekar S. A., Suni M. A., He X.-S., Picker L. J., Maino V. C. Factors affecting the efficiency of CD8+ T cell cross-priming with exogenous antigens. The Journal of Immunology. 2001;166(12):7268–7275. doi: 10.4049/jimmunol.166.12.7268. PubMed DOI
Damhof R. A., Drijfhout J. W., Scheffer A. J., Wilterdink J. B., Welling G. W., Welling-Wester S. T cell responses to synthetic peptides of herpes simplex virus type 1 glycoprotein D in naturally infected individuals. Archives of Virology. 1993;130(1-2):187–193. doi: 10.1007/bf01319007. PubMed DOI
Solomon L. Epidemiology of recurrent genital herpes simplex virus types 1 and 2. Sexually Transmitted Infections. 2003;79(6):456–459. doi: 10.1136/sti.79.6.456. PubMed DOI PMC
Patel R., Kennedy O. J., Clarke E., et al. 2017 European guidelines for the management of genital herpes. International Journal of STD & AIDS. 2017;28(14):1366–1379. doi: 10.1177/0956462417727194. PubMed DOI