Identification of two compound heterozygous VPS13A large deletions in chorea-acanthocytosis only by protein and quantitative DNA analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
090532/Z/09/Z
Wellcome Trust - United Kingdom
PubMed
32056394
PubMed Central
PMC7507471
DOI
10.1002/mgg3.1179
Knihovny.cz E-zdroje
- Klíčová slova
- VPS13A, chorea-acanthocytosis, chorein, compound heterozygosity, deletion,
- MeSH
- choreoakantocytóza diagnóza genetika MeSH
- delece genu * MeSH
- dospělí MeSH
- genetické testování metody MeSH
- heterozygot MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- lidé MeSH
- vezikulární transportní proteiny genetika metabolismus MeSH
- western blotting metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vezikulární transportní proteiny MeSH
- VPS13A protein, human MeSH Prohlížeč
BACKGROUND: Chorea-acanthocytosis (ChAc; OMIM #200150) is a rare autosomal recessive condition with onset in early adulthood that is caused by mutations in the vacuolar protein sorting 13A (VPS13A) gene encoding chorein. Several diagnostic genomic DNA (gDNA) sequencing approaches are widely used. However, their limitations appear not to be acknowledged thoroughly enough. METHODS: Clinically, we deployed magnetic resonance imaging, blood smear analysis, and clinical chemistry for the index patient's characterization. The molecular analysis of the index patient next to his parents covered genomic DNA (gDNA) sequencing approaches, RNA/cDNA sequencing, and chorein specific Western blot. RESULTS: We report a 33-year-old male patient without functional protein due to compound heterozygosity for two VPS13A large deletions of 1168 and 1823 base pairs (bp) affecting, respectively, exons 8 and 9, and exon 13. To our knowledge, this represents the first ChAc case with two compound heterozygous large deletions identified so far. Of note, standard genomic DNA (gDNA) Sanger sequencing approaches alone yielded false negative findings. CONCLUSION: Our case demonstrates the need to carry out detection of chorein in patients suspected of having ChAc as a helpful and potentially decisive tool to establish diagnosis. Furthermore, the course of the molecular analysis in this case discloses diagnostic pitfalls in detecting some variations, such as deletions, using only standard genomic DNA (gDNA) Sanger sequencing approaches and exemplifies alternative methods, such as RNA/cDNA sequencing or qRT-PCR analysis, necessary to avoid false negative results.
Department of Neurology Klinikum rechts der Isar Technische Universität München Munich Germany
Department of Neuroradiology Klinikum rechts der Isar Technische Universität München Munich Germany
kbo Isar Amper Klinikum Taufkirchen Germany
Neurologische Klinik und Poliklinik Ludwigs Maximilians Universität München Munich Germany
Wellcome Centre for Human Genetics University of Oxford Oxford United Kingdom
Zobrazit více v PubMed
Anderson, D. G. , Krause, A. , & Margolis, R. L. (2004). Huntington Disease‐Like 2 [Updated 2019 Jun 27] In Adam M. P., Ardinger H. H., Pagon R. A., Wallace S. E., Bean L. J. H., Stephens K., & Amemiya A. (Eds.), GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK1529. PubMed
Anderson, D. G. , Walker, R. H. , Connor, M. , Carr, J. , Margolis, R. L. , & Krause, A. (2017). A systematic review of the Huntington disease‐like 2 phenotype. Journal of Huntington's Disease, 6(1), 37–46. 10.3233/JHD-160232 PubMed DOI
Bean, B. D. M. , Dziurdzik, S. K. , Kolehmainen, K. L. , Fowler, C. M. S. , Kwong, W. K. , Grad, L. I. , … Conibear, E. (2018). Competitive organelle‐specific adaptors recruit Vps13 to membrane contact sites. The Journal of Cell Biology, 217(10), 3593–3607. 10.1083/jcb.201804111 PubMed DOI PMC
Boehm, D. , Herold, S. , Kuechler, A. , Liehr, T. , & Laccone, F. (2004). Rapid detection of subtelomeric deletion/duplication by novel real‐time quantitative PCR using SYBR‐green dye. Human Mutation, 23(4), 368–378. 10.1002/humu.20011 PubMed DOI
Bonelli, R. M. , & Cummings, J. L. (2007). Frontal‐subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141–151. PubMed PMC
Chen, Z. , Wang, J.‐L. , Tang, B.‐S. , Sun, Z.‐F. , Shi, Y.‐T. , Shen, L. U. , … Jiang, H. (2013). Using next‐generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders. Neurobiology of Aging, 34(10), 2442.e11–2442.e17. 10.1016/j.neurobiolaging.2013.04.029 PubMed DOI
Danek, A. (2004). Neuroacanthocytosis syndromes. Dordrecht, The Netherlands: Springer.
De, M. , Oleskie, A. N. , Ayyash, M. , Dutta, S. , Mancour, L. , Abazeed, M. E. , … Fuller, R. S. (2017). The Vps13p–Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. Journal of Cell Biology, 216(2), 425–439. 10.1083/jcb.201606078 PubMed DOI PMC
Dobson‐Stone, C. (2004). Molecular genetics of chorea‐acanthocytosis. Oxford, UK: University of Oxford; Retrieved from https://ora.ox.ac.uk/objects/uuid:3992386d-7d0d-4b88-bcf6-7170e2ba98cc.
Dobson‐Stone, C. , Danek, A. , Rampoldi, L. , Hardie, R. J. , Chalmers, R. M. , Wood, N. W. , … Monaco, A. P. (2002). Mutational spectrum of the CHAC gene in patients with chorea‐acanthocytosis. European Journal of Human Genetics, 10(11), 773–781. 10.1038/sj.ejhg.5200866 PubMed DOI
Dobson‐Stone, C. , Velayos‐Baeza, A. , Filippone, L. A. , Westbury, S. , Storch, A. , Erdmann, T. , … Monaco, A. P. (2004). Chorein detection for the diagnosis of chorea‐acanthocytosis. Annals of Neurology, 56(2), 299–302. 10.1002/ana.20200 PubMed DOI
Hermann, A. , & Walker, R. H. (2015). Diagnosis and treatment of chorea syndromes. Current Neurology and Neuroscience Reports, 15(2), 1 10.1007/s11910-014-0514-0 PubMed DOI
Kumar, N. , Leonzino, M. , Hancock‐Cerutti, W. , Horenkamp, F. A. , Li, P. Q. , Lees, J. A. , … De Camilli, P. (2018). VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. The Journal of Cell Biology, 217(10), 3625–3639. 10.1083/jcb.201807019 PubMed DOI PMC
Kurosaki, T. , & Maquat, L. E. (2016). Nonsense‐mediated mRNA decay in humans at a glance. Journal of Cell Science, 129(3), 461–467. 10.1242/jcs.181008 PubMed DOI PMC
Lang, A. B. , Peter, A. T. J. , Walter, P. , & Kornmann, B. (2015). ER–mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. The Journal of Cell Biology, 210(6), 883–890. 10.1083/jcb.201502105 PubMed DOI PMC
Muñoz‐Braceras, S. , Calvo, R. , & Escalante, R. (2015). TipC and the chorea‐acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells. Autophagy, 11(6), 918–927. 10.1080/15548627.2015.1034413 PubMed DOI PMC
Muñoz‐Braceras, S. , Tornero‐Écija, A. R. , Vincent, O. , & Escalante, R. (2019). VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Disease Models & Mechanisms, 12(2), dmm036681 10.1242/dmm.036681 PubMed DOI PMC
Myers, M. D. , & Payne, G. S. (2017). Vps13 and Cdc31/centrin: Puzzling partners in membrane traffic. Journal of Cell Biology, 216(2), 299–301. 10.1083/jcb.201612026 PubMed DOI PMC
Park, J.‐S. , Thorsness, M. K. , Policastro, R. , McGoldrick, L. L. , Hollingsworth, N. M. , Thorsness, P. E. , & Neiman, A. M. (2016). Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Molecular Biology of the Cell, 27(15), 2435–2449. 10.1091/mbc.e16-02-0112 PubMed DOI PMC
Peikert, K. , Danek, A. , & Hermann, A. (2018). Current state of knowledge in Chorea‐Acanthocytosis as core Neuroacanthocytosis syndrome. European Journal of Medical Genetics, 61(11), 699–705. 10.1016/j.ejmg.2017.12.007 PubMed DOI
Rampoldi, L. , Dobson‐Stone, C. , Rubio, J. P. , Danek, A. , Chalmers, R. M. , Wood, N. W. , … Monaco, A. P. (2001). A conserved sorting‐associated protein is mutant in chorea‐acanthocytosis. Nature Genetics, 28(2), 119–120. 10.1038/88821 PubMed DOI
Storch, A. , Kornhass, M. , & Schwarz, J. (2005). Testing for acanthocytosis: A prospective reader‐blinded study in movement disorder patients. Journal of Neurology, 252(1), 84–90. 10.1007/s00415-005-0616-3 PubMed DOI
Tomiyasu, A. , Nakamura, M. , Ichiba, M. , Ueno, S. , Saiki, S. , Morimoto, M. , … Sano, A. (2011). Novel pathogenic mutations and copy number variations in the VPS13A Gene in patients with chorea‐acanthocytosis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(5), 620–631. 10.1002/ajmg.b.31206 PubMed DOI
Ueno, S.‐I. , Maruki, Y. , Nakamura, M. , Tomemori, Y. , Kamae, K. , Tanabe, H. , … Sano, A. (2001). The gene encoding a newly discovered protein, chorein, is mutated in chorea‐acanthocytosis. Nature Genetics, 28(2), 121–122. 10.1038/88825 PubMed DOI
Velayos Baeza, A. , Dobson‐Stone, C. , Rampoldi, L. , Bader, B. , Walker, R. H. , Danek, A. , & Monaco, A. P. (2002). Chorea‐Acanthocytosis [Updated 2019 Apr 18] In Adam M. P., Ardinger H. H., Pagon R. A., Wallace S. E., Bean L. J. H., Stephens K., & Amemiya A. (Eds.), GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK1387/.
Velayos‐Baeza, A. , Levecque, C. , Dobson‐Stone, C. , & Monaco, A. P. (2008). The function of chorein In Walker R. H., Saiki S., & Danek A. (Eds.), Neuroacanthocytosis syndromes II (pp. 87–105). Berlin Heidelberg, Germany: Springer.
Velayos‐Baeza, A. , Vettori, A. , Copley, R. R. , Dobson‐Stone, C. , & Monaco, A. P. (2004). Analysis of the human VPS13 gene family. Genomics, 84(3), 536–549. 10.1016/j.ygeno.2004.04.012 PubMed DOI
Vonk, J. J. , Yeshaw, W. M. , Pinto, F. , Faber, A. I. E. , Lahaye, L. L. , Kanon, B. , … Sibon, O. C. M. (2017). Drosophila Vps13 is required for protein homeostasis in the brain. PLoS ONE, 12(1), e0170106 10.1371/journal.pone.0170106 PubMed DOI PMC
Walker, R. H. (2015). Untangling the thorns: Advances in the neuroacanthocytosis syndromes. Journal of Movement Disorders, 8(2), 41–54. 10.14802/jmd.15009 PubMed DOI PMC
Walker, R. H. , Jung, H. H. , Dobson‐Stone, C. , Rampoldi, L. , Sano, A. , Tison, F. , & Danek, A. (2007). Neurologic phenotypes associated with acanthocytosis. Neurology, 68(2), 92–98. 10.1212/01.wnl.0000250356.78092.cc PubMed DOI
Walker, R. H. , Saiki, S. , & Danek, A. (2008). Neuroacanthocytosis Syndromes II. Berlin Heidelberg, Germany: Springer.
Walker, R. H. , Schulz, V. P. , Tikhonova, I. R. , Mahajan, M. C. , Mane, S. , Arroyo Muniz, M. , & Gallagher, P. G. (2012). Genetic diagnosis of neuroacanthocytosis disorders using exome sequencing: Exome sequencing and neuroacanthocytosis. Movement Disorders, 27(4), 539–543. 10.1002/mds.24020 PubMed DOI
Walker, S. , Dad, R. , Thiruvahindrapuram, B. , Ullah, M. I. , Ahmad, A. , Hassan, M. J. , … Minassian, B. A. (2018). Chorea‐acanthocytosis: Homozygous 1‐kb deletion in VPS13A detected by whole‐genome sequencing. Neurology Genetics, 4(3), e242 10.1212/NXG.0000000000000242 PubMed DOI PMC
Weber, J. , Frings, L. , Rijntjes, M. , Urbach, H. , Fischer, J. , Weiller, C. , … Klebe, S. (2019). Chorea‐acanthocytosis presenting as autosomal recessive epilepsy in a family with a novel VPS13A mutation. Frontiers in Neurology, 9, 10.3389/fneur.2018.01168 PubMed DOI PMC
Yeshaw, W. M. , van der Zwaag, M. , Pinto, F. , Lahaye, L. L. , Faber, A. I. , Gomez‐Sanchez, R. , Sibon, O. C. (2019) Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife, 8, e43561 10.7554/eLife.43561. PubMed DOI PMC