Similar factors underlie tree abundance in forests in native and alien ranges

. 2020 Feb ; 29 (2) : 281-294. [epub] 20191201

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32063745

Grantová podpora
I 2086 Austrian Science Fund FWF - Austria
I 3757 Austrian Science Fund FWF - Austria

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

Biodiversity Macroecology and Biogeography University of Goettingen Göttingen Germany

Centre d'Ecologie Fonctionnelle et Evolutive CNRS Université Paul Valéry Montpellier EPHE Univ Montpellier Montpellier France

Centre of Biodiversity and Sustainable Land Use University of Goettingen Göttingen Germany

Chair of Crop Science and Plant Biology Estonian University of Life Sciences Tartu Estonia

Computational and Applied Vegetation Ecology Ghent University Ghent Belgium

CREAF Barcelona Spain

CSIC Global Ecology Unit CREAF CSIC UAB Barcelona Spain

Data and Modelling Centre Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany

Departamento de Ciencias Ambientales y Recursos Naturales Renovables Facultad de Ciencias Agronómicas Universidad de Chile Santiago Chile

Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany

Department of Biological Sciences Florida Institute of Technology Melbourne Florida

Department of Biology Santa Clara University Santa Clara California

Department of Biology University of North Carolina Chapel Hill North Carolina

Department of Biosciences Durham University Durham United Kingdom

Department of Botany and Zoology Masaryk University Brno Czech Republic

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany

Department of Ecology and Evolutionary Biology Brown University Providence Rhode Island

Department of Environmental Biology University Sapienza of Rome Rome Italy

Department of Forest Resources University of Minnesota St Paul Minnesota

Division of Conservation Biology Vegetation Ecology and Landscape Ecology Department of Botany and Biodiversity Research University of Vienna Vienna Austria

Ecology Department of Biology University of Konstanz Konstanz Germany

Estonian Academy of Sciences Tallinn Estonia

Faculty of Agricultural and Environmental Science University of Rostock Rostock Germany

Faculty of Science Department of Biology University of A Coruña Coruña Spain

Faculty of Science Department of Ecology Charles University Prague Czech Republic

Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Great Lakes Forestry Centre Canadian Forest Service Natural Resources Canada Sault Ste Marie Ontario Canada

Hawkesbury Institute for the Environment Western Sydney University Penrith South DC New South Wales Australia

Institute for Alpine Environment EURAC Research Bolzano Italy

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

Institute of Botany Czech Academy of Sciences Průhonice Czech Republic

Institute of Botany Plant Science and Biodiversity Center Slovak Academy of Sciences Bratislava Slovakia

Institute of Ecology of the Volga River Basin Russian Academy of Sciences Tolyatti Russia

Landscape and Plant Ecology University of Hohenheim Stuttgart Germany

Martin Luther University Halle Wittenberg Institute of Biology Geobotany and Botanical Garden Halle Germany

Max Planck Institute for Biogeochemistry Jena Germany

Plant Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany

Research Unit of Biodiversity University of Oviedo Mieres Spain

School of Geography University of Nottingham Nottingham United Kingdom

Scientific Service Palmengarten der Stadt Frankfurt Frankfurt am Main Germany

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

Swiss Federal Research Institute WSL Biodiversity and Conservation Biology Birmensdorf Switzerland

Terrestrial Ecosystem Research Network School of Biological Sciences The University of Adelaide Adelaide South Australia Australia

Vegetation and Phytodiversity Analysis University of Göttingen Göttingen Germany

Vegetation Ecology Institute of Environment and Natural Resources Switzerland

Vegetation Forest and Landscape Ecology Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

Zobrazit více v PubMed

Ameztegui, A. , Paquette, A. , Shipley, B. , Heym, M. , Messier, C. , & Gravel, D. (2017). Shade tolerance and the functional trait: Demography relationship in temperate and boreal forests. Functional Ecology, 31, 821–830. 10.1111/1365-2435.12804 DOI

Aubin, I. , Munson, A. D. , Cardou, F. , Burton, P. J. , Isabel, N. , Pedlar, J. H. , … Mckenney, D. (2016). Traits to stay, traits to move: A review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 24, 164–186. 10.1139/er-2015-0072 DOI

Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48.

Begueria, S. , & Serrano, V. (2015). Package “SPEI”: Calculation of standardised precipitation‐evapotranspiration index. Version 1.6. Retrieved from https://cran.r-project.org/web/packages/SPEI/index.html

Broennimann, O. , Treier, U. A. , Müller‐Schärer, H. , Thuiller, W. , Peterson, A. T. , & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709. 10.1111/j.1461-0248.2007.01060.x PubMed DOI

Bruelheide, H. , Dengler, J. , Jiménez‐Alfaro, B. , Purschke, O. , Hennekens, S. M. , Chytrý, M. , … Zverev, A. (2019). sPlot—A new tool for global vegetation analyses. Journal of Vegetation Science, 30, 161–186. 10.1111/jvs.12710 DOI

Bruun, H. H. , & Ten Brink, D.‐J. (2008). Recruitment advantage of large seeds is greater in shaded habitats. Ecoscience, 15, 498–507. 10.2980/15-4-3147 DOI

Bucharova, A. , & van Kleunen, M. (2009). Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. Journal of Ecology, 97, 230–238. 10.1111/j.1365-2745.2008.01469.x DOI

Callaway, R. M. , & Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science, 290, 521–523. 10.1126/science.290.5491.521 PubMed DOI

Carboni, M. , Münkemüller, T. , Gallien, L. , Lavergne, S. , Acosta, A. , & Thuiller, W. (2013). Darwin’s naturalization hypothesis: Scale matters in coastal plant communities. Ecography, 36, 560–568. 10.1111/j.1600-0587.2012.07479.x PubMed DOI PMC

Carboni, M. , Münkemüller, T. , Lavergne, S. , Choler, P. , Borgy, B. , Violle, C. , … Thuiller, W. (2016). What it takes to invade grassland ecosystems: Traits, introduction history and filtering processes. Ecology Letters, 19, 219–229. 10.1111/ele.12556 PubMed DOI PMC

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI

Chytrý, M. , Jarošík, V. , Pyšek, P. , Hájek, O. , Knollová, I. , Tichý, L. , & Danihelka, J. (2008). Separating habitat invasibility by alien plants from the actual level of invasion. Ecology, 89, 1541–1553. 10.1890/07-0682.1 PubMed DOI

Colautti, R.I. , Parker, J. D. , Cadotte, M. W. , Pyšek, P. , Brown, C. S. , … Richardson, D. (2014). Quantifying the invasiveness of species. Neobiota, 21, 7–27. 10.3897/neobiota.21.5310 DOI

Colautti, R. I. , Ricciardi, A. , Grigorovich, I. A. , & MacIsaac, H. J. (2004). Is invasion success explained by the enemy release hypothesis? Ecology Letters, 7, 721–733. 10.1111/j.1461-0248.2004.00616.x DOI

Conedera, M. , Wohlgemuth, T. , Tanadini, M. , & Pezzatti, G. B. (2018). Drivers of broadleaved evergreen species spread into deciduous forests in the southern Swiss Alps. Regional Environmental Change, 18, 425–436. 10.1007/s10113-017-1212-7 DOI

Dainese, M. , Aikio, S. , Hulme, P. E. , Bertolli, A. , Prosser, F. , & Marini, L. (2017). Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 7, 577–580. 10.1038/nclimate3337 DOI

Dallas, T. , Decker, R. R. , & Hastings, A. (2017). Species are not most abundant in the centre of their geographic range or climatic niche. Ecology Letters, 20, 1526–1533. 10.1111/ele.12860 PubMed DOI

Dalling, J. W. , & Hubbell, S. P. (2002). Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology, 90, 557–568. 10.1046/j.1365-2745.2002.00695.x DOI

Díaz, S. , Kattge, J. , Cornelissen, J. H. C. , Wright, I. J. , Lavorel, S. , Dray, S. , … Gorné, L. D. (2015). The global spectrum of plant form and function. Nature, 529, 167–171. 10.1038/nature16489 PubMed DOI

Donaldson, J. E. , Hui, C. , Richardson, D. M. , Robertson, M. P. , Webber, B. L. , & Wilson, J. R. U. (2014). Invasion trajectory of alien trees: The role of introduction pathway and planting history. Global Change Biology, 20, 1527–1537. 10.1111/gcb.12486 PubMed DOI

Feng, Y. , & van Kleunen, M. (2016). Introduction history, climatic suitability, native range size, species traits and their interactions explain establishment of Chinese woody species in Europe. Global Ecology and Biogeography, 25, 1356–1366. 10.1111/geb.12497 DOI

Firn, J. , Moore, J. L. , MacDougall, A. S. , Borer, E. T. , Seabloom, E. W. , HilleRisLambers, J. , … Buckley, Y. M. (2011). Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 14, 274–281. 10.1111/j.1461-0248.2010.01584.x PubMed DOI

Gallardo, B. , Zieritz, A. , & Aldridge, D. C. (2015). The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders. PLoS ONE, 10, 1–17. 10.1371/journal.pone.0125801 PubMed DOI PMC

Gallien, L. , & Carboni, M. (2017). The community ecology of invasive species: Where are we and what’s next? Ecography, 40, 335–352. 10.1111/ecog.02446 DOI

Gallien, L. , Carboni, M. , & Münkemüller, T. (2014). Identifying the signal of environmental filtering and competition in invasion patterns—A contest of approaches from community ecology. Methods in Ecology and Evolution, 5, 1002–1011. 10.1111/2041-210X.12257 DOI

Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472. 10.1214/ss/1177011136 DOI

Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857–871. 10.2307/2528823 DOI

Guo, W. Y. , van Kleunen, M. , Winter, M. , Weigelt, P. , Stein, A. , Pierce, S. , … Pyšek, P. (2018). The role of adaptive strategies in plant naturalization. Ecology Letters, 21, 1380–1389. 10.1111/ele.13104 PubMed DOI

Hierro, J. L. , Maron, J. L. , & Callaway, R. M. (2005). A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15. 10.1111/j.0022-0477.2004.00953.x DOI

Houslay, T. M. , & Wilson, A. J. (2017). Avoiding the misuse of BLUP in behavioural ecology. Behavioral Ecology, 28, 948–952. 10.1093/beheco/arx023 PubMed DOI PMC

Hulme, P. E. (2014). Alien plants confront expectations of climate change impacts. Trends in Plant Science, 19, 547–549. 10.1016/j.tplants.2014.05.003 PubMed DOI

Kattge, J. , Díaz, S. , Lavorel, S. , Prentice, I. C. , Leadley, P. , Bönisch, G. , … Wirth, C. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905–2935. 10.1111/j.1365-2486.2011.02451.x DOI

Kraft, N. J. B. , Adler, P. B. , Godoy, O. , James, E. C. , Fuller, S. , & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592–599. 10.1111/1365-2435.12345 DOI

Kraft, N. J. B. , Godoy, O. , & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences USA, 112, 797–802. PubMed PMC

Kunstler, G. , Falster, D. , Coomes, D. A. , Hui, F. , Kooyman, R. M. , Laughlin, D. C. , … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204–207. 10.1038/nature16476 PubMed DOI

Lai, H. R. , Mayfield, M. M. , Gay‐des‐combes, J. M. , Spiegelberger, T. , & Dwyer, J. M. (2015). Distinct invasion strategies operating within a natural annual plant system. Ecology Letters, 18, 336–346. 10.1111/ele.12414 PubMed DOI

Lockwood, J. L. , Cassey, P. , & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution, 20, 223–228. 10.1016/j.tree.2005.02.004 PubMed DOI

Mack, R. N. , Simberloff, D. , Lonsdale, M. W. , Evans, H. , Clout, M. , & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689–710. 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 DOI

Maechler, M. , Rousseeuw, P. , Struyf, A. , Hubert, M. , & Hornik, K. (2017). Cluster: Cluster analysis basics and extensions. R package version 2.0.6. Retrieved from https://cran.r-project.org/web/packages/cluster/cluster.pdf

Markesteijn, L. , Poorter, L. , Bongers, F. , Paz, H. , & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191, 480–495. 10.1111/j.1469-8137.2011.03708.x PubMed DOI

Martin, P. H. , Canham, C. D. , & Marks, P. L. (2009). Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance. Frontiers in Ecology and the Environment, 7, 142–149. 10.1890/070096 DOI

Montesinos‐Navarro, A. , Estrada, A. , Font, X. , Matias, M. G. , Meireles, C. , Mendoza, M. , … Early, R. (2018). Community structure informs species geographic distributions. PLoS ONE, 13, 1–16. PubMed PMC

Niklas, K. J. , & Spatz, H. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97, 1587–1594. 10.3732/ajb.1000150 PubMed DOI

Oduor, A. M. O. , Leimu, R. , van Kleunen, M. , & Mack, R. (2016). Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. Journal of Ecology, 104, 957–968. 10.1111/1365-2745.12578 DOI

Parker, J. D. , Torchin, M. E. , Hufbauer, R. A. , Lemoine, N. P. , Alba, C. , Blumenthal, D. M. , … Wolfe, L. M. (2013). Do invasive species perform better in their new ranges? Ecology, 5, 985–994. 10.1890/12-1810.1 PubMed DOI

Petit, R. J. , Bialozyt, R. , Garnier‐Géré, P. , & Hampe, A. (2004). Ecology and genetics of tree invasions: From recent introductions to Quaternary migrations. Forest Ecology and Management, 197, 117–137. 10.1016/j.foreco.2004.05.009 DOI

Plummer, M. (2013). rjags: Bayesian graphical models using MCMC. R package version 4.9.

Plummer, M. , Best, N. , Cowles, K. , & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.

Plummer, M. , Stukalov, A. , & Denwood, M. . (2016). Bayesian graphical models using MCMC.

Poorter, H. , Niinemets, Ü. , Poorter, L. , Wright, I. J. , & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta‐analysis. New Phytologist, 182, 565–588. 10.1111/j.1469-8137.2009.02830.x PubMed DOI

Pyšek, P. , Manceur, A. M. , Alba, C. , McGregor, K. F. , Pergl, J. , Štajerová, K. , … Kühn, I. (2015). Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology, 96, 762–774. 10.1890/14-1005.1 PubMed DOI

Pyšek, P. , Pergl, J. , Essl, F. , Lenzner, B. , Dawson, W. , Kreft, H. , … Kleunen, M. V. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89, 203–274. 10.23855/preslia.2017.203 DOI

R Core Team . (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/

Rejmánek, M. , & Richardson, D. M. (1996). What attributes make some plant species more invasive? Ecology, 77, 1655–1661. 10.2307/2265768 DOI

Rejmánek, M. , & Richardson, D. M. (2013). Trees and shrubs as invasive alien species—2013 update of the global database. Diversity and Distributions, 19, 1093–1094. 10.1111/ddi.12075 DOI

Richardson, D. M. , Hui, C. , Nuñez, M. A. , & Pauchard, A. (2014). Tree invasions: Patterns, processes, challenges and opportunities. Biological Invasions, 16, 473–481. 10.1007/s10530-013-0606-9 DOI

Rundel, P. W. , Dickie, I. A. , & Richardson, D. M. (2014). Tree invasions into treeless areas: Mechanisms and ecosystem processes. Biological Invasions, 16, 663–675. 10.1007/s10530-013-0614-9 DOI

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103–113. 10.1111/j.2041-210X.2010.00012.x DOI

Schrodt, F. , Kattge, J. , Shan, H. , Fazayeli, F. , Joswig, J. , Banerjee, A. , … Reich, P. B. (2015). BHPMF—A hierarchical Bayesian approach to gap‐filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 24, 1510–1521. 10.1111/geb.12335 DOI

Slik, J. W. F. , Paoli, G. , McGuire, K. , Amaral, I. , Barroso, J. , Bastian, M. , … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271. 10.1111/geb.12092 DOI

Stohlgren, T. J. (1999). Exotic plant species invade hot spots of native plant diversity. Ecological Monographs, 69, 25–46.

Taylor, K. T. , Maxwell, B. D. , Pauchard, A. , Nuñez, M. A. , Peltzer, D. A. , Terwei, A. , & Rew, L. J. (2016). Drivers of plant invasion vary globally: Evidence from pine invasions within six ecoregions. Global Ecology and Biogeography, 25, 96–106. 10.1111/geb.12391 DOI

Tecco, P. A. , Díaz, S. , Cabido, M. , & Urcelay, C. (2010). Functional traits of alien plants across contrasting climatic and land‐use regimes: Do aliens join the locals or try harder than them? Journal of Ecology, 98, 17–27. 10.1111/j.1365-2745.2009.01592.x DOI

Theoharides, K. A. , & Dukes, J. S. (2007). Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256–273. 10.1111/j.1469-8137.2007.02207.x PubMed DOI

Thomson, F. J. , Moles, A. T. , Auld, T. D. , & Kingsford, R. T. (2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology, 99, 1299–1307. 10.1111/j.1365-2745.2011.01867.x DOI

Van Couwenberghe, R. , Collet, C. , Pierrat, J. C. , Verheyen, K. , & Gégout, J. C. (2013). Can species distribution models be used to describe plant abundance patterns? Ecography, 36, 665–674. 10.1111/j.1600-0587.2012.07362.x DOI

van der Sande, M. T. , Poorter, L. , Kooistra, L. , Balvanera, P. , Thonicke, K. , Thompson, J. , … Peña‐Claros, M. (2017). Biodiversity in species, traits and structure determines carbon stocks and uptake in tropical forests. Biotropica, 49, 593–603. 10.1111/btp.12453 DOI

van Kleunen, M. , Dawson, W. , Essl, F. , Pergl, J. , Winter, M. , Weber, E. , … Pyšek, P. (2015). Global exchange and accumulation of non‐native plants. Nature, 525, 100–103. 10.1038/nature14910 PubMed DOI

van Kleunen, M. , Dawson, W. , Schlaepfer, D. , Jeschke, J. M. , & Fischer, M. (2010). Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecology Letters, 13, 947–958. 10.1111/j.1461-0248.2010.01503.x PubMed DOI

van Kleunen, M. , Weber, E. , & Fischer, M. (2010). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, 13, 235–245. 10.1111/j.1461-0248.2009.01418.x PubMed DOI

van Kleunen, M. , Pyšek, P. , Dawson, W. , Essl, F. , Kreft, H. , Pergl, J. , … Winter, M. (2019). The global naturalized alien flora (GloNAF) database. Ecology, 100, 1–2. PubMed

Vicente‐Serrano, S. M. , Beguería, S. , & López‐Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718. 10.1175/2009JCLI2909.1 DOI

Vilà, M. , Basnou, C. , Pyšek, P. , Josefsson, M. , Genovesi, P. , Gollasch, S. , … Hulme, P. E. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan‐European, cross‐taxa assessment. Frontiers in Ecology and the Environment, 8, 135–144. 10.1890/080083 DOI

Westoby, M. (1998). A leaf‐height‐seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213–227.

Williamson, M. , & Fitter, A. (1996). The varying success of invaders. Ecology, 77, 1661–1666. 10.2307/2265769 DOI

Zuur, A. F. , Ieno, E. N. , & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3–14. 10.1111/j.2041-210X.2009.00001.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...