Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats
Language English Country Great Britain, England Media print-electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
32068262
PubMed Central
PMC7219625
DOI
10.1111/joa.13159
Knihovny.cz E-resources
- Keywords
- audiogram, carnivores, cochlea, domestication, hair cells, hearing, morphology,
- MeSH
- Phylogeny * MeSH
- Cats MeSH
- Foxes anatomy & histology physiology MeSH
- Dogs MeSH
- Ear, Middle anatomy & histology physiology MeSH
- Organ Size physiology MeSH
- Body Size physiology MeSH
- Hair Cells, Auditory physiology MeSH
- Ear, Inner anatomy & histology physiology MeSH
- Animals MeSH
- Check Tag
- Cats MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Anatomical middle and inner ear parameters are often used to predict hearing sensitivities of mammalian species. Given that ear morphology is substantially affected both by phylogeny and body size, it is interesting to consider whether the relatively small anatomical differences expected in related species of similar size have a noticeable impact on hearing. We present a detailed anatomical description of the middle and inner ears of the red fox Vulpes vulpes, a widespread, wild carnivore for which a behavioural audiogram is available. We compare fox ears to those of the well-studied and similarly sized domestic dog and cat, taking data for dogs and cats from the literature as well as providing new measurements of basilar membrane (BM) length and hair cell numbers and densities in these animals. Our results show that the middle ear of the red fox is very similar to that of dogs. The most obvious difference from that of the cat is the lack of a fully formed bony septum in the bulla tympanica of the fox. The cochlear structures of the fox, however, are very like those of the cat, whereas dogs have a broader BM in the basal cochlea. We further report that the mass of the middle ear ossicles and the bulla volume increase with age in foxes. Overall, the ear structures of foxes, dogs and cats are anatomically very similar, and their behavioural audiograms overlap. However, the results of several published models and correlations that use middle and inner ear measurements to predict aspects of hearing were not always found to match well with audiogram data, especially when it came to the sharper tuning in the fox audiogram. This highlights that, although there is evidently a broad correspondence between structure and function, it is not always possible to draw direct links when considering more subtle differences between related species.
Department of General Zoology Faculty of Biology University of Duisburg Essen Essen Germany
Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
See more in PubMed
Ballast, L. (1984) Funktionelle und vergleichende Morphologie der Cochlea von Wildformen und Laborstämmen der Muridae Unpublished Diss., Frankfurt am Main, Germany: Johann Wolfgang Goethe‐Universität.
Begall, S. and Burda, H. (2006) Acoustic communication and burrow acoustics are reflected in the ear morphology of the coruro (Spalacopus cyanus, Octodontidae), a social fossorial rodent. Journal of Morphology, 267, 382–390. PubMed
Bondy, G. (1907) Beiträge zur Vergleichenden Anatomie des Gehörorgans der Säuger (Tympanicum, Membrane Shrapnelli und Chordaverlauf). Anatomische Hefte, 35, 293–408.
Braniš, M. and Burda, H. (1985) Inner ear structure in the deaf and normally hearing Dalmatian dog. Journal of Comparative Pathology, 95, 295–299. PubMed
Burda, H. (1985) Effects of domestication on morphometry of ear structures in Norway rats. Fortschritte der Zoologie, 30, 657–659.
Burda, H. , Ballast, L. and Bruns, V. (1988) Cochlea in old world mice and rats (Muridae). Journal of Morphology, 198, 269–285. PubMed
Burda, H. , Úlehlová, L. and Braniš, M. (1984) Morphology of the middle and inner ear in two Panthera species—P. tigris and P. onca (Felidae, Carnivora, Mammalia). Věstník Československé společnosti zoologické, 48, 9–14.
Cabezudo, L.M. (1978) The ultrastructure of the basilar membrane in the cat. Acta Oto‐laryngologica, 86, 160–175. PubMed
Cole, L.K. (2009) Anatomy and physiology of the canine ear. Veterinary Dermatology, 20, 412–421. PubMed
Coleman, M.N. and Colbert, M.W. (2010) Correlations between auditory structures and hearing sensitivity in non‐human primates. Journal of Morphology, 271, 511–532. PubMed
Coleman, M.N. and Ross, C.F. (2004) Primate auditory diversity and its influence on hearing performance. The Anatomical Record A, 281, 1123–1137. PubMed
Dahmann, H. (1929) Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette, sowie über deren Verhalten auf Ton und Luftdruck. Z. Hals‐Nasen‐u Ohrenheilk (Leipzig), 24, 462–498.
Dallos, P. (1973) The Auditory Periphery. New York, NY: Academic Press.
Davis, H. (1953) Acoustic trauma in the guinea pig. The Journal of the Acoustical Society of America, 25, 1180–1189.
de La Rochefoucauld, O. , Kachroo, P. and Olson, E.S. (2010) Ossicular motion related to middle ear transmission delay in gerbil. Hearing Research, 270, 158–172. PubMed PMC
Decraemer, W.F. and Khanna, S.M. (2004) Measurement, visualization and quantitative analysis of complete three‐dimensional kinematical data sets of human and cat middle ear In: Gyo K., Wada H., Hato N. and Koike T. (Eds.) Middle Ear Mechanics in Research and Otology. Singapore City, Singapore: World Scientific, pp. 3–10.
Defalque, V. , Rosenstein, D. and Rosser, J.E. (2005) Measurement of normal middle ear cavity volume in mesaticephalic dogs. Veterinary Radiology & Ultrasound, 46, 490–493. PubMed
Doran, A. (1878) Morphology of the mammalian ossicula auditûs. 2nd series. London: Transactions of the Linnean Society, (Vol. 1, pp. 371-497).
Echteler, S.M. , Fay, R.R. and Popper, A.N. (1994) Structure of the mammalian cochlea In: Fay R.R. and Popper A.N. (Eds.) Comparative Hearing: Mammals. New York, NY: Springer, pp. 134–171.
Ekdale, E.G. (2013) Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE, 8, e66624. PubMed PMC
Evans, H.E. and De Lahunta, A. (2013) Miller's Anatomy of the Dog. St. Louis, Missouri: Elsevier Saunders.
Fay, R.R. (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill‐Fay Associates.
Fleischer, G. (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundliche Mitteilungen, 21, 131–239.
Fleischer, G. (1978) Evolutionary principles of the mammalian middle ear. Advances in Anatomy, Embryology and Cell Biology, 55, 1–70. PubMed
Fletcher, N.H. (1992) Acoustic Systems in Biology. Oxford, UK: Oxford University Press.
Funnell, W.R.J. , Decraemer, W.F. and Khanna, S.M. (1987) On the damped frequency response of a finite‐element model of the cat eardrum. The Journal of the Acoustical Society of America, 81, 1851–1859. PubMed
Funnell, W.R.J. , Khanna, S.M. and Decraemer, W.F. (1992) On the degree of rigidity of the manubrium in a finite‐element model of the cat eardrum. The Journal of the Acoustical Society of America, 91, 2082–2090. PubMed
Gray, A.A. (1907) The Labyrinth of Animals. Including Mammals, Birds, Reptiles and Amphibians. London, UK: J. & A. Churchill.
Greenwood, D.D. (1990) A cochlear frequency‐position function for several species—29 years later. The Journal of the Acoustical Society of America, 87, 2592–2605. PubMed
Guild, S.R. (1921) A graphic reconstruction method for the study of the organ of Corti. The Anatomical Record, 22, 140–157.
Guinan, J.J. and Peake, W.T. (1967) Middle‐ear characteristics of anesthetized cats. The Journal of the Acoustical Society of America, 41, 1237–1261. PubMed
Hartová‐Nentvichová, M. , Anděra, M. and Hart, V. (2010) Cranial ontogenetic variability, sex ratio and age structure of the red fox. Central European Journal of Biology, 5, 894–907.
Heffner, H.E. (1983) Hearing in large and small dogs: Absolute thresholds and size of the tympanic membrane. Behavioral Neuroscience, 97, 310–318.
Heffner, H.E. and Heffner, R.S. (2016) The evolution of mammalian sound localization. Acoustics Today, 12, 20–27.
Hemilä, S. , Nummela, S. and Reuter, T. (1995) What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research, 85, 31–44. PubMed
Holz, K. (1931) Vergleichende anatomische und topographische Studien über das Mittelohr der Säugetiere. Zeitschrift für Anatomie und Entwicklungsgeschichte, 94, 757–791.
Huang, G. , Rosowski, J. and Peake, W. (2000) Relating middle‐ear acoustic performance to body size in the cat family: measurements and models. Journal of Comparative Physiology A, 186, 447–465. PubMed
Huang, G. , Rosowski, J. , Ravicz, M. and Peake, W. (2002) Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). Journal of Comparative Physiology A, 188, 663–681. PubMed
Hunt, R.M. (1974) The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. Journal of Morphology, 143, 21–75. PubMed
Hunt, R.M. and Korth, W.W. (1980) The auditory region of Dermoptera: morphology and function relative to other living mammals. Journal of Morphology, 164, 167–211. PubMed
Igarashi, M. , Alford, B. , Cohn, A. , Saito, R. and Watanabe, T. (1972) Inner ear anomalies in dogs. The Annals of Otology, Rhinology, and Laryngology, 81, 249–255. PubMed
Keen, J.A. (1939) A note on the comparative size of the cochlear canal in mammals. Journal of Anatomy, 73, 592. PubMed PMC
Keen, J.A. (1940) A note on the length of the basilar membrane in man and in various mammals. Journal of Anatomy, 74, 524. PubMed PMC
Keen, J.A. and Grobbelaar, C.S. (1941) The comparative anatomy of the tympanic bulla and auditory ossicles, with a note suggesting their function. Transactions of the Royal Society of South Africa, 28, 307–329.
Ketten, D.R. (1997) Structure and function in whale ears. Bioacoustics, 8, 103–135.
Kirikae, I. (1960) The structure and function of the middle ear. Tokyo, Japan: University of Tokyo Press.
Lavender, D. , Taraskin, S.N. and Mason, M.J. (2011) Mass distribution and rotational inertia of “microtype” and “freely mobile” middle ear ossicles in rodents. Hearing Research, 282, 97–107. PubMed
Le, T. and Keithley, E.M. (2007) Effects of antioxidants on the aging inner ear. Hearing Research, 226, 194–202. PubMed
Liberman, M.C. (1982) The cochlear frequency map for the cat: labeling auditory‐nerve fibers of known characteristic frequency. The Journal of the Acoustical Society of America, 72, 1441–1449. PubMed
Liberman, M.C. and Beil, D.G. (1979) Hair cell condition and auditory nerve response in normal and noise‐damaged cochleas. Acta Oto‐laryngologica, 88, 161–176. PubMed
Lynch, T.J. , Nedzelnitsky, V. and Peake, W.T. (1982) Input impedance of the cochlea in cat. The Journal of the Acoustical Society of America, 72, 108–130. PubMed
Mair, I. (1976) Hereditary deafness in the Dalmatian dog. European Archives of Oto‐Rhino‐Laryngology, 212, 1–14. PubMed
Malkemper, E.P. and Peichl, L. (2018) Retinal photoreceptor and ganglion cell types and topographies in the red fox (Vulpes vulpes) and Arctic fox (Vulpes lagopus). Journal of Comparative Neurology, 2018, 1–21. PubMed
Malkemper, E.P. , Topinka, V. and Burda, H. (2015) A behavioral audiogram of the red fox (Vulpes vulpes). Hearing Research, 320, 30–37. PubMed
Manoussaki, D. , Chadwick, R.S. , Ketten, D.R. , Arruda, J. , Dimitriadis, E.K. and O'Malley, J.T. (2008) The influence of cochlear shape on low‐frequency hearing. Proceedings of the National Academy of Sciences of the United States of America, 105, 6162–6166. PubMed PMC
Mason, M. (1999) The functional anatomy of the middle ear of mammals, with an emphasis on fossorial forms. Unpublished Ph. D. Diss., Cambridge, UK: Univ. of Cambridge.
Mason, M.J. (2003) Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). Journal of Zoology, London, 260, 405–413.
Mason, M.J. (2004) Functional morphology of the middle ear in Chlorotalpa golden moles (Mammalia, Chrysochloridae): predictions from three models. Journal of Morphology, 261, 162–174. PubMed
Mason, M.J. (2006) Evolution of the middle ear apparatus in talpid moles. Journal of Morphology, 267, 678–695. PubMed PMC
Mason, M.J. (2013) Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals. Hearing Research, 301, 4–18. PubMed
Mason, M.J. (2016a) Structure and function of the mammalian middle ear. I: Large middle ears in small desert mammals. Journal of Anatomy, 228, 284–299. PubMed PMC
Mason, M.J. (2016b) Structure and function of the mammalian middle ear. II: Inferring function from structure. Journal of Anatomy, 228, 300–312. PubMed PMC
Mason, M.J. , Bennett, N.C. and Pickford, M. (2018) The middle and inner ears of the Palaeogene golden mole Namachloris: a comparison with extant species. Journal of Morphology, 279, 375–395. PubMed
Mason, M.J. , Cornwall, H.L. and Smith, E.S.J. (2016) Ear structures of the naked mole‐rat, Heterocephalus glaber, and its relatives (Rodentia: Bathyergidae). PLoS ONE, 11, e0167079. PubMed PMC
Montague, M.J. , Li, G. , Gandolfi, B. , et al. (2014) Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences of the United States of America, 111, 17230–17235. PubMed PMC
Mooney, M.P. , Kraus, E.M. , Bardach, J. and Snodgass, J.I. (1982) Skull preparation using the enzyme‐active detergent technique. The Anatomical Record, 202, 125–129. PubMed
Nadol, J.B. Jr (1988) Comparative anatomy of the cochlea and auditory nerve in mammals. Hearing Research, 34, 253–266. PubMed
Nedzelnitsky, V. (1980) Sound pressures in the basal turn of the cat cochlea. The Journal of the Acoustical Society of America, 68, 1676–1689. PubMed
Nummela, S. (1995) Scaling of the mammalian middle ear. Hearing Research, 85, 18–30. PubMed
Overstreet, E.H. and Ruggero, M.A. (2002) Development of wide‐band middle ear transmission in the Mongolian gerbil. The Journal of the Acoustical Society of America, 111, 261–270. PubMed PMC
Peake, W.T. , Rosowski, J.J. and Lynch Iii, T.J. (1992) Middle‐ear transmission: Acoustic versus ossicular coupling in cat and human. Hearing Research, 57, 245–268. PubMed
Puria, S. and Allen, J.B. (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. The Journal of the Acoustical Society of America, 104, 3463–3481. PubMed
Ravicz, M.E. , Rosowski, J.J. and Voigt, H.F. (1992) Sound‐power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle‐ear input impedance. The Journal of the Acoustical Society of America, 92, 157–177. PubMed
Retzius, G. (1884) Das Gehörorgan der Wirbelthiere: morphologisch‐histologische Studien. 2, Das Gehörorgan der Reptilien, der Vögel und der Säugethiere. Stockholm, Sweden: Gedruckt in der Centraldruckerei in Commission bei Samson & Wallin.
Rosowski, J. (1992) Hearing in transitional mammals: predictions from the middle‐ear anatomy and hearing capabilities of extant mammals In: Webster D.B., Popper A.N. and Fay R.R. (Eds.) The Evolutionary Biology of Hearing. New York, NY: Springer, pp. 615–631.
Rosowski, J.J. and Graybeal, A. (1991) What did Morganucodon hear? Zoological Journal of the Linnean Society, 101, 131–168.
Rosowski, J.J. , Ravicz, M.E. and Songer, J.E. (2006) Structures that contribute to middle‐ear admittance in chinchilla. Journal of Comparative Physiology A, 192, 1287–1311. PubMed PMC
Ruggero, M.A. and Temchin, A.N. (2002) The roles of the external, middle, and inner ears, in determining the bandwidth of hearing. Proceedings of the National Academy of Sciences of the United States of America, 99, 13206–13210. PubMed PMC
Salih, W.H.M. , Buytaert, J.A.N. , Aerts, J.R.M. , Vanderniepen, P. , Dierick, M. and Dirckx, J.J.J. (2012) Open access high‐resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains. Hearing Research, 284, 1–5. PubMed
Sato, M. , Leake, P.A. and Hradek, G.T. (1999) Postnatal development of the organ of Corti in cats: a light microscopic morphometric study. Hearing Research, 127, 1–13. PubMed
Schleich, C.E. and Busch, C. (2004) Functional morphology of the middle ear of Ctenomys talarum (Rodentia: Octodontidae). Journal of Mammalogy, 85, 290–295.
Schuknecht, H.F. (1953) Techniques for study of cochlear function and pathology in experimental animals. AMA Archives of Otolaryngology, 58, 377–397. PubMed
Schuknecht, H.F. , Icarashi, M. and Gacek, R.R. (1965) The pathological types of cochleo‐saccular degeneration. Acta Oto‐laryngologica, 59, 154–170.
Solntseva, G. (2010) Morphology of the inner ear of mammals in ontogeny. Russian Journal of Developmental Biology, 41, 94–110.
Solntseva, G. (2013) Adaptive features of the middle ear of mammal in ontogeny. Acta Zoologica Bulgarica, 65, 101–116.
Spoendlin, H. (1969) Innervation patterns in the organ of Corti of the cat. Acta Oto‐Laryngologica, 67, 239–254. PubMed
Ulehlova, L. , Burda, H. and Voldrich, L. (1984) Involution of the auditory neuro‐epithelium in a tiger (Panthera tigris) and a jaguar (Panthera onca). Journal of Comparative Pathology, 94, 153–157. PubMed
van Kampen, P.N. (1905) Die Tympanalgegend des Säugetierschädels. Gegenbaurs Morphologisches Jahrbuch, 34, 321–327.
Vater, M. and Kössl, M. (2011) Comparative aspects of cochlear functional organization in mammals. Hearing Research, 273, 89–99. PubMed
von Békésy, G. (1960) Experiments in Hearing. New York, NY: McGraw‐Hill.
Webster, D.B. and Webster, M. (1975) Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. Journal of Morphology, 146, 343–376. PubMed
West, C.D. (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. The Journal of the Acoustical Society of America, 77, 1091–1101. PubMed
West, C.D. and Harrison, J.M. (1973) Transneuronal cell atrophy in the congenitally deaf white cat. Journal of Comparative Neurology, 151, 377–398. PubMed
Wible, J.R. and Spaulding, M. (2012) A reexamination of the Carnivora malleus (Mammalia, Placentalia). PLoS ONE, 7, e50485. PubMed PMC
Wilson, J. and Bruns, V. (1983) Middle‐ear mechanics in the CF‐bat Rhinolophus ferrumequinum . Hearing Research, 10, 1–13. PubMed
Zwislocki, J. (1965) Analysis of Some Auditory Characteristics. Handbook of Mathematical Psychology New York, NY: Wiley.