A re-evaluation of silk measurement by the cecropia caterpillar (Hyalophora cecropia) during cocoon construction reveals use of a silk odometer that is temporally regulated
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32074121
PubMed Central
PMC7029867
DOI
10.1371/journal.pone.0228453
PII: PONE-D-19-25507
Knihovny.cz E-zdroje
- MeSH
- biobehaviorální přístup MeSH
- biologická proměna fyziologie MeSH
- bourec anatomie a histologie fyziologie MeSH
- chování zvířat fyziologie MeSH
- čití, cítění fyziologie MeSH
- hedvábí analýza chemie metabolismus MeSH
- kukla fyziologie MeSH
- Manduca anatomie a histologie fyziologie MeSH
- mikroskopie elektronová rastrovací MeSH
- senzorická zpětná vazba fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hedvábí MeSH
The late 5th instar caterpillar of the cecropia silk moth (Hyalophora cecropia) spins a silken cocoon with a distinct, multilayered architecture. The cocoon construction program, first described by the seminal work of Van der Kloot and Williams, consists of a highly ordered sequence of events. We perform behavioral experiments to re-evaluate the original cecropia work, which hypothesized that the length of silk that passes through the spinneret controls the orderly execution of each of the discrete events of cocoon spinning. We confirm and extend by three-dimensional scanning and quantitative measurements of silk weights that if cocoon construction is interrupted, upon re-spinning, the caterpillar continues the cocoon program from where it left off. We also confirm and extend by quantitative measurements of silk weights that cecropia caterpillars will not bypass any of the sections of the cocoon during the construction process, even if presented with a pre-spun section of a cocoon spun by another caterpillar. Blocking silk output inhibits caterpillars from performing normal spinning behaviors used for cocoon construction. Surprisingly, unblocking silk output 24-hr later did not restart the cocoon construction program, suggesting the involvement of a temporally-defined interval timer. We confirm with surgical reductions of the silk glands that it is the length of silk itself that matters, rather than the total amount of silk extracted by individuals. We used scanning electron microscopy to directly show that either mono- or dual-filament silk (i.e., equal silk lengths but which vary in their total amount of silk extracted) can be used to construct equivalent cocoons of normal size and that contain the relevant layers. We propose that our findings, taken together with the results of prior studies, strongly support the hypothesis that the caterpillar uses a silk "odometer" to measure the length of silk extracted during cocoon construction but does so in a temporally regulated manner. We further postulate that our examination of the anatomy of the silk spinning apparatus and ablating spinneret sensory output provides evidence that silk length measurement occurs upstream of output from the spinneret.
Department of Biological Sciences University of Cincinnati Cincinnati OH United States of America
Faculty of Science University of South Bohemia Branisovska Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Wolf H. Odometry and insect navigation. J Exp Biol. 2011;214: 1629–1641. 10.1242/jeb.038570 PubMed DOI
Wittlinger M, Wehner R, Wolf H. The ant odometer. Science 2006;312: 1965–11967 10.1126/science.1126912 PubMed DOI
Wittlinger M, Wehner R, Wolf H. The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol. 2007;210: 198–207. 10.1242/jeb.02657 PubMed DOI
Land MF, Stepping movements made by jumping spiders during turns mediated by the lateral eyes. J Exp Biol. 1972;57: 15–40. PubMed
Walls ML, Layne JE. Direct evidence for distance measurement via flexible stride integration in the fiddler crab. Curr Biol. 2009;19: 25–29. 10.1016/j.cub.2008.10.069 PubMed DOI
Van der Kloot WG, Williams CM. Cocoon construction by the cecropia silkworm. I. The role of the external environment. Behaviour. 1953;5: 141–156.
Van der Kloot WG, Williams CM. Cocoon construction by the cecropia silkworm. II. The role of the internal environment. Behaviour. 1953;5: 157–174.
Van der Kloot WG, Williams CM. Cocoon construction by the cecropia silkworm. III. The alteration of spinning behavior by chemical and surgical techniques. Behaviour. 1954;6: 233–255.
Waldbauer GP, Scarborough AG, Sternburg JG. The allocation of silk in the compact and baggy cocoons of Hyalophora cecropia. Entomol Exp Appl. 1982;31: 191–196.
Guerra PA, Reppert SM. Dimorphic cocoons of the cecropia moth (Hyalophora cecropia): Morphological, behavioral, and biophysical differences. PLoS ONE. 2017;12(3):e0174023 10.1371/journal.pone.0174023 PubMed DOI PMC
Danks HV. Modification of adverse conditions by insects. Oikos. 2002;99: 10–24.
Danks HV. The roles of insect cocoons in cold conditions. Eur J Entomol. 2004;101: 433–437.
Lounibos L. Initiation and maintenance of cocoon spinning behaviour by saturniid silkworms. Physiol Entomol. 1976;1: 195–206.
Scarborough AG, Sternburg JG, Waldbauer GP. Selection of the cocoon spinning site by the larvae of Hyalophora cecropia (Saterniidae). J Lep Soc. 1977;31: 153–166.
Weevers R de G. The insect ganglia In: Kerkut GA, Gilbert LI, editors. Comprehensive insect physiology biochemistry and pharmacology, vol. 5 New York: Pergamon Press; 1985. p. 213–297.
Zacharuk RY. Antennae and sensilla In: Kerkut GA, Gilbert LI, editors. Comprehensive insect physiology biochemistry and pharmacology, vol. 6 New York: Pergamon Press; 1985. p. 1–69.
Berkowitz A. Expanding our horizons: central patter generation in the context of complex activity complexes. J Exp Biol. 2019;222 PubMed
Tuskes PM, Collins ML, Tuttle JP. The wild silk moths of North America: a natural history of the Saturniidae of the United States and Canada. 1st ed Ithaca, NY: Cornell University Press; 1996.
Lounibos LP. The cocoon spinning behavior of the Chinese oak silkworm, Antheraea pernyi. Anim Behav. 1975;23: 843–853
Costa JT. Caterpillars as social insects. Am Sci. 1997;85: 150–159.
Fitzgerald TD, Willer DE. Tent-building behavior of the Eastern tent caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). J Kans Entomol Soc.1983;56: 20–31.
Gromysz K. Research on the plasticity of building behavior in caterpillars of the bagworm Psyche viciella Schiff. Folia Biol.1960;8: 351–415.
Merrill D. The stimulus for case-building activity in caddis-worms (Trichoptera). J exp Zool. 1956;158: 123–132. PubMed
Edgerly JS, Davilla JA, Schoenfeld N. Silk spinning behavior and domicile construction in webspinners. J Insect Behav. 2002;15: 219–242.
Reed CF. Cues in web-building process. Amer Zool.1969;9: 211–221.
Hesselberg T. Exploration behaviour and behavioural flexibility in orb-web spiders: a review. Current Zoology. 2015;61: 313–327.
Eberhard WG. Adaptive flexibility in cues guiding spider web construction and its possible implications for spider cognition. Behaviour. 2019;156: 331–362.
Turner-Evans DB, Jayaraman V. The insect central complex. Curr Biol. 2016;26: 453–457. PubMed
Huetteroth W, el Jundi B, el Jundi S, Schachtner J. 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Front Syst Neurosci. 2010;4: 1–15. 10.3389/neuro.06.001.2010 PubMed DOI PMC
Campbell RA, Turner GC. The mushroom body. Curr Biol. 2009;20: 11–12. PubMed
Wahdepuhl H, Huber F. Elicitation of singing and courtship movements by electrical stimulation of the brain of the grasshopper. Naturwissenschafter. 1979;66:320–322.
Martin J-R, Ernst R, Heisenberg M. Mushroom bodies suppress locomotor activity inf Drosophila melanogaster. Learn Mem. 1998;5: 179–191. PubMed PMC
Gronenberg W, Lopez-Riquelme GO. Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol Hung. 2004;55: 31–37. 10.1556/ABiol.55.2004.1-4.5 PubMed DOI
Hiroi M, Ohkura M, Nakai J, Masuda N, Hashimoto K, Inoue K, et al. Principal component analysis of odor coding at the level of third-order olfactory neurons in Drosophila. Genes Cells. 2013;18: 1070–1081. 10.1111/gtc.12094 PubMed DOI
Skorupski P, MaBouDi H, Dona HSG, Chittka L. Counting insects. Phil Trans R Soc B. 2017; 373(1740). pii: 20160513 10.1098/rstb.2016.0513 PubMed DOI PMC
The Role of Filippi's Glands in the Silk Moths Cocoon Construction
The Filippi's Glands of Giant Silk Moths: To Be or Not to Be?