The late 5th instar caterpillar of the cecropia silk moth (Hyalophora cecropia) spins a silken cocoon with a distinct, multilayered architecture. The cocoon construction program, first described by the seminal work of Van der Kloot and Williams, consists of a highly ordered sequence of events. We perform behavioral experiments to re-evaluate the original cecropia work, which hypothesized that the length of silk that passes through the spinneret controls the orderly execution of each of the discrete events of cocoon spinning. We confirm and extend by three-dimensional scanning and quantitative measurements of silk weights that if cocoon construction is interrupted, upon re-spinning, the caterpillar continues the cocoon program from where it left off. We also confirm and extend by quantitative measurements of silk weights that cecropia caterpillars will not bypass any of the sections of the cocoon during the construction process, even if presented with a pre-spun section of a cocoon spun by another caterpillar. Blocking silk output inhibits caterpillars from performing normal spinning behaviors used for cocoon construction. Surprisingly, unblocking silk output 24-hr later did not restart the cocoon construction program, suggesting the involvement of a temporally-defined interval timer. We confirm with surgical reductions of the silk glands that it is the length of silk itself that matters, rather than the total amount of silk extracted by individuals. We used scanning electron microscopy to directly show that either mono- or dual-filament silk (i.e., equal silk lengths but which vary in their total amount of silk extracted) can be used to construct equivalent cocoons of normal size and that contain the relevant layers. We propose that our findings, taken together with the results of prior studies, strongly support the hypothesis that the caterpillar uses a silk "odometer" to measure the length of silk extracted during cocoon construction but does so in a temporally regulated manner. We further postulate that our examination of the anatomy of the silk spinning apparatus and ablating spinneret sensory output provides evidence that silk length measurement occurs upstream of output from the spinneret.
- MeSH
- biobehaviorální přístup MeSH
- biologická proměna fyziologie MeSH
- bourec anatomie a histologie fyziologie MeSH
- chování zvířat fyziologie MeSH
- čití, cítění fyziologie MeSH
- hedvábí analýza chemie metabolismus MeSH
- kukla fyziologie MeSH
- Manduca anatomie a histologie fyziologie MeSH
- mikroskopie elektronová rastrovací MeSH
- senzorická zpětná vazba fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence- and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants.
- MeSH
- acetáty metabolismus farmakologie MeSH
- býložravci fyziologie MeSH
- časové faktory MeSH
- cyklopentany metabolismus farmakologie MeSH
- cytokininy metabolismus MeSH
- geneticky modifikované rostliny MeSH
- interakce hostitele a parazita účinky léků MeSH
- listy rostlin genetika metabolismus parazitologie MeSH
- Manduca fyziologie MeSH
- nemoci rostlin genetika parazitologie MeSH
- oxylipiny metabolismus farmakologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák genetika metabolismus parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH