Relationship between the Size and Inner Structure of Particles of Virgin and Re-Used MS1 Maraging Steel Powder for Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010040
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32093368
PubMed Central
PMC7078906
DOI
10.3390/ma13040956
PII: ma13040956
Knihovny.cz E-zdroje
- Klíčová slova
- EBSD, EDS, FIB, additive manufacturing, maraging steel,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing (AM) is today in the main focus-and not only in commercial production. Products with complex geometry can be built using various AM techniques, which include laser sintering of metal powder. Although the technique has been known for a quite long time, the impact of the morphology of individual powder particles on the process has not yet been adequately documented. This article presents a detailed microscopic analysis of virgin and reused powder particles of MS1 maraging steel. The metallographic observation was performed using a scanning electron microscope (SEM). The particle size of the individual powder particles was measured in the SEM and the particle surface morphology and its change in the reused powder were observed. Individual particles were analyzed in detail using an SEM with a focused ion beam (FIB) milling capability. The powder particles were gradually cut off in thin layers so that their internal structure, chemical element distribution, possible internal defects, and shape could be monitored. Elemental distribution and phase distribution were analyzed using EDS and EBSD, respectively. Our findings lead to a better understanding and prediction of defects in additive-manufactured products. This could be helpful not just in the AM field, but in any metal powder-based processes, such as metal injection molding, powder metallurgy, spray deposition processes, and others.
Zobrazit více v PubMed
Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017;60:677–688. doi: 10.1016/j.bushor.2017.05.011. DOI
Eyers D.R., Potter A.T. Industrial Additive Manufacturing: A manufacturing systems perspective. Comput. Ind. 2017;92–93:208–218. doi: 10.1016/j.compind.2017.08.002. DOI
Levoguer C. Using laser diffraction to measure particle size and distribution. Met. Powder Rep. 2013;68:15–18. doi: 10.1016/S0026-0657(13)70090-0. DOI
Manfredi D., Calignano F., Krishnan M., Canali R., Ambrosio E.P., Atzeni E. From powders to dense metal parts: Characterization of a commercial alsimg alloy processed through direct metal laser sintering. Materials. 2013;6:856–869. doi: 10.3390/ma6030856. PubMed DOI PMC
Thomas M., Drawin S. Role of Metal Powder Characteristics in Additive Manufacturing; Proceedings of the PM2016 World Congress; Hambourg, Germany. 9–13 October 2016.
Dunning J.S., Doan R.C. Microstructural characteristics and gas content of rapidly solidified powders. J. Mater. Sci. 1994;29:4268–4272. doi: 10.1007/BF00414209. DOI
Kattamis T.Z., Mehrabian R. Undercooling during atomization of VM300 maraging steel. J. Mater. Sci. 1974;9:1040–1043. doi: 10.1007/BF00570399. DOI
Spratt M., Newkirk J.W., Chandrashekhara K. Fabrication of Metal Matrix Syntactic Foams by a Laser Additive Manufacturing Process; Proceedings of the Materials Science and Technology Conference and Exhibition 2016; Salt Lake City, UT, USA. 23–27 October 2016; Warrendale, PA, USA: Association for Iron & Steel Technology (AIST); 2016. pp. 1319–1326.
Achelis L., Uhlenwinkel V. Characterisation of metal powders generated by a pressure-gas-atomiser. Mater. Sci. Eng. A. 2008;477:15–20. doi: 10.1016/j.msea.2007.07.095. DOI
Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016;61:315–360. doi: 10.1080/09506608.2015.1116649. DOI
Anderson I.E., White E.M.H., Tiarks J.A., Riedemann T., Byrd D.J., Anderson R.D., Regele J.D. Fundamental progress toward increased powder yields from gas atomization for additive manufacturing; Proceedings of the Advances in Powder Metallurgy and Particulate Materials; Las Vegas, NV, USA. 13–16 June 2017; pp. 138–146.
ASTM International . ASTM B214-16 Standard Test Method for Sieve Analysis of Metal Powders. ASTM International; West Conshohocken, PA, USA: 2016.
Slotwinski J.A., Garboczi E.J., Stutzman P.E., Ferraris C.F., Watson S.S., Peltz M.A. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014;119:460–493. doi: 10.6028/jres.119.018. PubMed DOI PMC
Desai P.S., Mehta A., Dougherty P.S.M., Fred Higgs C. A rheometry based calibration of a first-order DEM model to generate virtual avatars of metal Additive Manufacturing (AM) powders. Powder Technol. 2018;342:441–456. doi: 10.1016/j.powtec.2018.09.047. DOI
EOS GmbH Material Data Sheet-8Ni300. [(accessed on 20 November 2019)]; Available online: http://ip-saas-eos-cms.s3.amazonaws.com/public/1af123af9a636e61/042696652ecc69142c8518dc772dc113/EOS_MaragingSteel_MS1_en.pdf.
Rasband W.S., ImageJ: Image processing and analysis in Java Astrophys. [(accessed on 15 September 2018)];Source Code Libr. Available online: https://imagej.nih.gov/ij/
Maitland T., Sitzman S. Scanning Microscopy Nanotechnology. Springer; New York, NY, USA: 2007. EBSD Technique and Materials Characterization; pp. 41–76.
Mutua J., Nakata S., Onda T., Chen Z.C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2018;139:486–497. doi: 10.1016/j.matdes.2017.11.042. DOI
Altug-Peduk G.S., Dilibal S., Harrysson O., Ozbek S., West H. Characterization of Ni-Ti Alloy Powders for Use in Additive Manufacturing. Russ. J. Non-Ferr. Met. 2018;59:433–439. doi: 10.3103/S106782121804003X. DOI
Stojakovic D. Electron backscatter diffraction in materials characterization. Process. Appl. Ceram. 2012;6:1–13. doi: 10.2298/PAC1201001S. DOI
Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI
Kučerová L., Zetková I., Jandová A., Bystrianský M. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater. Sci. Eng. A. 2019;750:70–80. doi: 10.1016/j.msea.2019.02.041. DOI
Behulova M., Moravcik R., Kusy M., Caplovic L., Grgac P., Stancek L. Influence of atomization on solidification microstructures in the rapidly solidi- fied powder of the Cr–Mo–V tool steel. Mater. Sci. Eng. A. 2001;304:540–543. doi: 10.1016/S0921-5093(00)01511-2. DOI
Ali U., Esmaeilizadeh R., Ahmed F., Sarker D., Muhammad W., Keshavarzkermani A., Mahmoodkhani Y., Marzbanrad E., Toyserkani E. Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4PH stainless steel laser powder-bed fusion parts. Mater. Sci. Eng. A. 2019;756:98–107. doi: 10.1016/j.msea.2019.04.026. DOI
Evaluation of Recycled and Reused Metal Powders for DMLS 3D Printing