Production of Hybrid Joints by Selective Laser Melting of Maraging Tool Steel 1.2709 on Conventionally Produced Parts of the Same Steel
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010040
Ministerstvo školství, mládeže a tělovýchovy České republiky
PubMed
33919436
PubMed Central
PMC8122586
DOI
10.3390/ma14092105
PII: ma14092105
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, hybrid joints, maraging tool steel, powder bed fusion,
- Publikační typ
- časopisecké články MeSH
Joining additively manufactured (AM) complex shaped parts to larger conventionally produced parts can lead to innovative product designs. Another alternative is direct deposition on a conventional semi-product. Therefore, similar joints of maraging tool steel 1.2709 were produced by AM deposition of powder of this steel on a bulk conventionally manufactured steel part. The resulting hybrid parts were solution annealed and precipitation hardened. Solution annealing at 820 °C for 20 min was followed by furnace cooling. Precipitation hardening was performed at 490 °C for 6 h. The mechanical properties of the samples were characterised using tensile testing and hardness measurement across the joint. Metallographic analysis was also carried out. The tensile properties of the AM and conventionally produced steel after equivalent heat treatments were also determined as the reference values. The mechanical properties of the hybrid parts are close to the properties of both steels. The hybrid parts in the as-built condition had a tensile strength of 1029 MPa and a total elongation of 14%. Solution annealing did not change these properties significantly, except for yield strength, which decreased by approximately 150 MPa. After precipitation annealing, the strength was higher, 2011 MPa, and total elongation dropped to 5%.
Zobrazit více v PubMed
Li N., Huang S., Zhang G., Qin R., Liu W., Xiong H., Shi G., Blackburn J. Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 2019;35:242–269. doi: 10.1016/j.jmst.2018.09.002. DOI
Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Bourell D., Kruth J.P., Leu M., Levy G., Rosen D., Beese A.M., Clare A. Materials for additive manufacturing. CIRP Ann. Manuf. Technol. 2017;66:659–681. doi: 10.1016/j.cirp.2017.05.009. DOI
Faludi J., Van Sice C.M., Shi Y., Bower J., Brooks O.M.K. Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J. Clean. Prod. 2019;212:1580–1590. doi: 10.1016/j.jclepro.2018.12.017. DOI
Al Mangour B., Yang J.M. Improving the surface quality and mechanical properties by shot-peening of 17–4 stainless steel fabricated by additive manufacturing. Mater. Des. 2016;110:914–924. doi: 10.1016/j.matdes.2016.08.037. DOI
Kučerová L., Zetková I., Jeníček Š., Burdová K. Hybrid parts produced by deposition of 18Ni300 maraging steel via selective laser melting on forged and heat treated advanced high strength steel. Addit. Manuf. 2020;32:101108. doi: 10.1016/j.addma.2020.101108. DOI
Azizi H., Ghiaasiaan R., Prager R., Ghoncheh M.H., Samk K.A., Lausic A., Byleveld W., Phillion A.B. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting. Addit. Manuf. 2019;27:389–397. doi: 10.1016/j.addma.2019.03.025. DOI
Cyr E., Asgari H., Shamsdini S., Purdy M., Hosseinkhani K., Mohammadi M. Fracture behaviour of additively manufactured MS1-H13 hybrid hard steels. Mater. Lett. 2018;212:174–177. doi: 10.1016/j.matlet.2017.10.097. DOI
Santos L.M.S., Jesus J., Ferreirea J.M., Costa J.D., Capela C. Fracture toughness of hybrid components with selective laser melting 18Ni300 steel parts. Appl. Sci. 2018;8:1879. doi: 10.3390/app8101879. DOI
Hur J., Lee K., Kim J. Hybrid rapid prototyping system using machining and deposition. Comput. Aided Des. 2002;34:741–754. doi: 10.1016/S0010-4485(01)00203-2. DOI
Stavropoulos P., Foteinopoulos P., Papacharalampopoulos A., Bikas H. Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. Int. J. Lightweight Mater. Manuf. 2018;1:157–168. doi: 10.1016/j.ijlmm.2018.07.002. DOI
Du W., Bai Q., Zhang B. A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts. Procedia Manuf. 2016;5:1018–1030. doi: 10.1016/j.promfg.2016.08.067. DOI
Bambach M.D., Bambach M., Sviridov A., Weiss S. New process chains involving additive manufacturing and metal forming —A chance for saving energy? Procedia Eng. 2017;207:1176–1181. doi: 10.1016/j.proeng.2017.10.1049. DOI
Kučerová L., Zetková I., Jandová A., Bystrianský M. Microstructural characterisation and in-situ straining of additive-manufactured X3NiCoMoTi 18-9-5 maraging steel. Mater. Sci. Eng. A. 2019;750:80–90. doi: 10.1016/j.msea.2019.02.041. DOI
Kempen K., Yasa E., Thijs L., Kruth J.P., Van Humbeeck J. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys. Procedia. 2011;12:255–263. doi: 10.1016/j.phpro.2011.03.033. DOI
Simm T.H., Sun L., Galvin D.R., Hill P., Rawson M., Birosca S., Gilbert E.P., Bhadeshia H., Perkins K. The effect of a two-stage heat-treatment on the microstructural and mechanical properties of a maraging steel. Materials. 2017;10:1346. doi: 10.3390/ma10121346. PubMed DOI PMC
Monkova K., Zetkova I., Kučerová L., Zetek M., Monka P., Daňa M. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch. Appl. Mech. 2019;89:791–804. doi: 10.1007/s00419-018-1389-3. DOI
Bai Y., Yang Y., Wang D., Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A. 2017;703:116–123. doi: 10.1016/j.msea.2017.06.033. DOI
Mutua J., Nakata S., Onda T., Chen Z.C. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 2017;139:486–497. doi: 10.1016/j.matdes.2017.11.042. DOI
Kučerová L., Zetková I. Metallography of 3D printed 1.2709 tool steel. Manuf. Technol. 2016;16:140–144. doi: 10.21062/ujep/x.2016/a/1213-2489/MT/16/1/140. DOI
Kürnsteiner P., Wilms M.B., Weisheit A., Barriobero-Vila P., Gault B., Jägle E.A., Raabe D. In-process precipitation during laser additive manufacturing investigated by atom probe tomography. Microsc. Microanal. 2017;23:694–695. doi: 10.1017/S1431927617004135. DOI
Tan C., Zhou K., Ma W., Zhang P., Liu M., Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017;134:23–34. doi: 10.1016/j.matdes.2017.08.026. DOI
Antretter T., Fischer F.D., Cihak U., Tanaka K., Cailletaud G., Fratzl P., Ortner B. Transformation Induced Plasticity (Trip) in a maraging steel. In: Sun Q.P., editor. IUTAM Symposium on Mechanics of Martensitic Phase Transformation in Solids. Solid Mechanics and Its Applications. Volume 101. Springer; Dordrecht, The Netherlands: 2002. DOI
Mooney B., Kourousis K.I., Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit. Manuf. 2019;25:19–31. doi: 10.1016/j.addma.2018.10.032. DOI
Luo C., Zhang Y. Fusion zone characterization of resistance spot welded maraging steels via selective laser melting. J. Mater. Process. Tech. 2019;273:11653. doi: 10.1016/j.jmatprotec.2019.116253. DOI
EN ISO 6892-1 . Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization (ISO); Geneva, Switzerland: 2019.
Opatová K., Zetková I., Kučerová L. Relationship between the size and inner structure of particles of virgin and re-used MS1 rinmaraging steel powder for additive manufactug. Materials. 2020;13:956. doi: 10.3390/ma13040956. PubMed DOI PMC
Kučerová L., Burdová K., Jeníček Š., Chena I. Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 1.2709 maraging steel. Mater. Sci. Eng. A. 2021;814:141195. doi: 10.1016/j.msea.2021.141195. DOI
Sakai P.R., Lima MS F., Fanton L., Gomes C.V., Lombardo S., Silva D.F., Abdalla A.J. Comparison of mechanical and microstructural characteristics in maraging 300 steel welded by three different processes: LASER. PLASMA and TIG. Procedia Eng. 2015;114:291–297. doi: 10.1016/j.proeng.2015.08.071. DOI
Jägle E.A., Sheng Z., Kürnsteiner P., Ocylok S., Weisheit A., Raabe D. Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing. Materials. 2017;10:8. doi: 10.3390/ma10010008. PubMed DOI PMC
Fanton L., Abdalla A.J., de Lima M.S.F. Heat treatment and Yb-Fiber laser welding of a maraging steel. Weld. J. 2014;93:326–368.
Material Data Sheet EOSINT M280 and EOS M290. [(accessed on 4 January 2021)]; Available online: https://www.eos.info/material-m.
Jagle E.A., Sheng Z., Wu L., Lu L., Risse J., Weisheit A., Raabe D. Precipitation reactions in age-hardenable alloys during laser additive manufacturing. J. Occup. Med. 2016;68:943–949. doi: 10.1007/s11837-015-1764-2. DOI