Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-07193S
Grantová Agentura České Republiky
INTER-COST LTC19008
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32106482
PubMed Central
PMC7146108
DOI
10.3390/nu12030595
PII: nu12030595
Knihovny.cz E-zdroje
- Klíčová slova
- Caco-2 cell lines, UHPLC-MS-Q-TOF, glucuronidation, phenolics, stilbenoids, sulphatation,
- MeSH
- biologická dostupnost MeSH
- Caco-2 buňky MeSH
- lidé MeSH
- permeabilita MeSH
- resveratrol chemie farmakokinetika MeSH
- stereoizomerie MeSH
- stilbeny chemie farmakokinetika MeSH
- střevní sliznice cytologie metabolismus mikrobiologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dihydroresveratrol MeSH Prohlížeč
- resveratrol MeSH
- stilbeny MeSH
Trans-resveratrol, a well-known plant phenolic compound, has been intensively investigated due to its association with the so-called French paradox. However, despite its high pharmacological potential, trans-resveratrol has shown relatively low bioavailability. Trans-resveratrol is intensively metabolized in the intestine and liver, yielding metabolites that may be responsible for its high bioactivity. The aim of this study was to investigate and compare the metabolism of trans-resveratrol (tRes), cis-resveratrol (cRes) and dihydroresveratrol (dhRes) in an in vitro epithelial model using Caco-2 cell lines. Obtained metabolites of tRes, cRes and dhRes were analyzed by LC/MS Q-TOF, and significant differences in the metabolism of each compound were observed. The majority of tRes was transported unchanged through the Caco-2 cells, while cRes was mostly metabolized. The main metabolite of both cis- and trans-resveratrol observed as a result of colon microbial metabolism, dhRes, was metabolized almost completely, with only traces of the unchanged molecule being found. A sulphate conjugate was identified as the main metabolite of tRes in our model, while a glucuronide conjugate was the major metabolite of cRes and dhRes. Since metabolism of simple phenolics and polyphenols plays a crucial role in their bioavailability, detailed knowledge of their transformation is of high scientific value.
Zobrazit více v PubMed
El Khawand T., Courtois A., Valls J., Richard T., Krisa S. A review of dietary stilbenes: sources and bioavailability. Phytochem. Rev. 2018;17:1007–1029. doi: 10.1007/s11101-018-9578-9. DOI
Berman A.Y., Motechin R.A., Wiesenfeld M.Y., Holz M.K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis. Oncol. 2017;35:1–9. doi: 10.1038/s41698-017-0038-6. PubMed DOI PMC
Moreno A., Castro M., Falqué E. Evolution of trans- and cis-resveratrol content in red grapes (Vitis vinifera L. cv Mencía, Albarello and Merenzao) during ripening. Eur. Food Res. Technol. 2008;227:667–674. doi: 10.1007/s00217-007-0770-1. DOI
Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI
Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the’French paradox’? Eur. J. Endocrinol. 1998;138:619–620. doi: 10.1530/eje.0.1380619. PubMed DOI
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Wenzel E., Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 2005;49:472–481. doi: 10.1002/mnfr.200500010. PubMed DOI
Jarosova V., Vesely O., Marsik P., Jaimes J.D., Smejkal K., Kloucek P., Havlik J. Metabolism of stilbenoids by human faecal microbiota. Molecules. 2019;24:1155. doi: 10.3390/molecules24061155. PubMed DOI PMC
Bode L.M., Bunzel D., Huch M., Cho G.S., Ruhland D., Bunzel M., Bub A., Franz C.M., Kulling S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295. doi: 10.3945/ajcn.112.049379. PubMed DOI
Juan M.E., González-Pons E., Planas J.M. Multidrug Resistance Proteins Restrain the Intestinal Absorption of trans-Resveratrol in Rats. J. Nutr. 2010;140:489–495. doi: 10.3945/jn.109.114959. PubMed DOI
Maier-Salamon A., Hagenauer B., Wirth M., Gabor F., Szekeres T., Jäger W. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm. Res. 2006;23:2107–2115. doi: 10.1007/s11095-006-9060-z. PubMed DOI
Urpi-Sarda M., Zamora-Ros R., Lamuela-Raventos R., Cherubini A., Jauregui O., De La Torre R., Covas M.I., Estruch R., Jaeger W., Andres-Lacueva C. HPLC-Tandem Mass Spectrometric Method to Characterize Resveratrol Metabolism in Humans. Clin. Chem. 2007;53:292–299. doi: 10.1373/clinchem.2006.071936. PubMed DOI
Boocock D.J., Faust G.E.S., Patel K.R., Schinas A.M., Brown V.A., Ducharme M.P., Booth T.D., Crowell J.A., Perloff M., Gescher A.J., et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomarkers Prev. 2007;16:1246–1252. doi: 10.1158/1055-9965.EPI-07-0022. PubMed DOI
Chen M., Yi L., Jin X., Xie Q., Zhang T., Zhou X., Chang H., Fu Y., Zhu J., Zhang Q., et al. Absorption of resveratrol by vascular endothelial cells through passive diffusion and an SGLT1-mediated pathway. J. Nutr. Biochem. 2013;24:1823–1829. doi: 10.1016/j.jnutbio.2013.04.003. PubMed DOI
Maier-Salamon A., Böhmdorfer M., Riha J., Thalhammer T., Szekeres T., Jaeger W. Interplay between metabolism and transport of resveratrol. Ann. N. Y. Acad. Sci. 2013;1290:98–106. doi: 10.1111/nyas.12198. PubMed DOI
Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., Lerin C., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006;127:1109–1122. doi: 10.1016/j.cell.2006.11.013. PubMed DOI
Timmers S., Konings E., Bilet L., Houtkooper R.H., van de Weijer T., Goossens G.H., Hoeks J., van der Krieken S., Ryu D., Kersten S., et al. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metab. 2011;14:612–622. doi: 10.1016/j.cmet.2011.10.002. PubMed DOI PMC
Falomir E., Lucas R., Peñalver P., Martí-Centelles R., Dupont A., Zafra-Gómez A., Carda M., Morales J.C. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites. ChemBioChem. 2016;17:1343–1348. doi: 10.1002/cbic.201600084. PubMed DOI
Storniolo C.E., Quifer-Rada P., Lamuela-Raventos R.M., Moreno J.J. Piceid presents antiproliferative effects in intestinal epithelial Caco-2 cells, effects unrelated to resveratrol release. Food Funct. 2014;5:2137–2144. doi: 10.1039/C4FO00305E. PubMed DOI
Su D., Cheng Y., Liu M., Liu D., Cui H., Zhang B., Zhou S., Yang T., Mei Q. Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro. PLoS ONE. 2013;8:e54505. doi: 10.1371/journal.pone.0054505. PubMed DOI PMC
Jarosova V., Doskocil I., Volstatova T., Havlik J. Adhesive Property of Different Strains of Lactobacilli in the Presence of Resveratrol. Sci. Agric. Bohem. 2018;49:291–296. doi: 10.2478/sab-2018-0036. DOI
Hubatsch I., Ragnarsson E.G.E., Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007;2:2111–2119. doi: 10.1038/nprot.2007.303. PubMed DOI
Li Y., Shin Y., Yu C., Kosmeder J., Hirschelman W., Pezzuto J., van Breemen R. Increasing the Throughput and Productivity of Caco-2 Cell Permeability Assays Using Liquid Chromatography-Mass Spectrometry: Application to Resveratrol Absorption and Metabolism. Comb. Chem. High Throughput Screen. 2012;6:757–767. doi: 10.2174/138620703771826865. PubMed DOI
Henry C., Vitrac X., Decendit A., Ennamany R., Krisa S., Mérillon J.M. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 2005;53:798–803. doi: 10.1021/jf048909e. PubMed DOI
Kaldas M.I., Walle U.K., Walle T. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 2003;55:307–312. doi: 10.1211/002235702612. PubMed DOI
Kuhnle G., Spencer J.P.E., Chowrimootoo G., Schroeter H., Debnam E.S., Srai S.K.S., Rice-Evans C., Hahn U. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 2000;272:212–217. doi: 10.1006/bbrc.2000.2750. PubMed DOI
Azorín-Ortuño M., Yáñez-Gascón M.J., Vallejo F., Pallarés F.J., Larrosa M., Lucas R., Morales J.C., Tomás-Barberán F.A., García-Conesa M.T., Espín J.C. Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food Res. 2011;55:1154–1168. doi: 10.1002/mnfr.201100140. PubMed DOI
Sabolovic N., Humbert A.C., Radominska-Pandya A., Magdalou J. Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharm. Drug Dispos. 2006;27:181–189. doi: 10.1002/bdd.498. PubMed DOI
Juan M.E., Alfaras I., Planas J.M. Determination of dihydroresveratrol in rat plasma by HPLC. J. Agric. Food Chem. 2010;58:7472–7475. doi: 10.1021/jf100836j. PubMed DOI