Metabolism of Stilbenoids by Human Faecal Microbiota
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-07193S
Grantová Agentura České Republiky
CIGA 20172031
Česká Zemědělská Univerzita v Praze
METROFOOD-CZ LM2018100
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30909544
PubMed Central
PMC6471231
DOI
10.3390/molecules24061155
PII: molecules24061155
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria colon model, fecal fermentation, liquid chromatography high resolution mass spectrometry, metabolites, phenolics, polyphenols, stilbenoids,
- MeSH
- chromatografie kapalinová MeSH
- feces mikrobiologie MeSH
- fenoly chemie metabolismus MeSH
- fermentace MeSH
- hmotnostní spektrometrie MeSH
- kolon metabolismus mikrobiologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- resveratrol chemie metabolismus MeSH
- stilbeny chemie metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3,3',4,5'-tetrahydroxystilbene MeSH Prohlížeč
- batatasin-III MeSH Prohlížeč
- fenoly MeSH
- pinostilbene MeSH Prohlížeč
- resveratrol MeSH
- stilbeny MeSH
Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum. The samples of metabolized stilbenoids were collected at 0, 2, 4, 8, 24, and 48 h. Significant differences in the microbial transformation among stilbene derivatives were observed by liquid chromatography mass spectrometry (LC/MS). Four stilbenoids (resveratrol, oxyresveratrol, piceatannol and thunalbene) were metabolically transformed by double bond reduction, dihydroxylation, and demethylation, while batatasin III and pinostilbene were stable under conditions simulating the colon environment. Strong inter-individual differences in speed, intensity, and pathways of metabolism were observed among the faecal samples obtained from the donors.
Zobrazit více v PubMed
Reinisalo M., Kårlund A., Koskela A., Kaarniranta K., Karjalainen R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell. Longev. 2015;2015:1–24. doi: 10.1155/2015/340520. PubMed DOI PMC
Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI
Sánchez-Fidalgo S., Cárdeno A., Villegas I., Talero E., de la Lastra C.A. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur. J. Pharmacol. 2010;633:78–84. doi: 10.1016/j.ejphar.2010.01.025. PubMed DOI
Leláková V., Šmejkal K., Jakubczyk K., Veselý O., Landa P., Václavík J., Bobá’ P., Pížová H., Temml V., Steinacher T., et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI
Kairisalo M., Bonomo A., Hyrskyluoto A., Mudò G., Belluardo N., Korhonen L., Lindholm D. Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci. Lett. 2011;488:263–266. doi: 10.1016/j.neulet.2010.11.042. PubMed DOI
Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei Á., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi: 10.1017/S0007114511000316. PubMed DOI
Buryanovskyy L., Fu Y., Boyd M., Ma Y., Hsieh T.C., Wu J.M., Zhang Z. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004;43:11417–11426. doi: 10.1021/bi049162o. PubMed DOI PMC
Smoliga J.M., Blanchard O. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC
Liu M., Wilk S.A., Wang A., Zhou L., Wang R.H., Ogawa W., Deng C., Dong L.Q., Liu F. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 2010;285:36387–36394. doi: 10.1074/jbc.M110.169284. PubMed DOI PMC
Piotrowska H., Kucinska M., Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. Rev. Mutat. Res. 2012;750:60–82. doi: 10.1016/j.mrrev.2011.11.001. PubMed DOI
Seyed M.A., Jantan I., Bukhari S.N.A., Vijayaraghavan K. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. J. Agric. Food Chem. 2016;64:725–737. doi: 10.1021/acs.jafc.5b05993. PubMed DOI
Murias M., Handler N., Erker T., Pleban K., Ecker G., Saiko P., Szekeres T., Jäger W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorganic Med. Chem. 2004;12:5571–5578. doi: 10.1016/j.bmc.2004.08.008. PubMed DOI
Allen E.N., Potdar S., Tapias V., Parmar M., Mizuno C.S., Rimando A., Cavanaugh J.E. Resveratrol and pinostilbene confer neuroprotection against aging-related deficits through an ERK1/2-dependent mechanism. J. Nutr. Biochem. 2018;54:77–86. doi: 10.1016/j.jnutbio.2017.10.015. PubMed DOI PMC
Xu L., Liu C., Xiang W., Chen H., Qin X., Huang X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 2014;10:44–54. doi: 10.3923/ijp.2014.44.54. DOI
Kantartzis K., Fritsche L., Bombrich M., Machann J., Schick F., Staiger H., Kunz I., Schoop R., Lehn-Stefan A., Heni M., et al. Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes. Metab. 2018;20:1793–1797. doi: 10.1111/dom.13268. PubMed DOI
Qiang L., Di Y., Jiang Z., Xu J. Resveratrol improves efficacy of oral amoxicillin against childhood fast breathing pneumonia in a randomized placebo-controlled double blind clinical trial. Microb. Pathog. 2018;114:209–212. doi: 10.1016/j.micpath.2017.11.062. PubMed DOI
Sattarinezhad A., Roozbeh J., Shirazi Yeganeh B., Omrani G.R., Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 2018;45:53–59. doi: 10.1016/j.diabet.2018.05.010. PubMed DOI
Wang P., Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors. 2018;44:16–25. doi: 10.1002/biof.1410. PubMed DOI
Van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., Van Velzen E.J., Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA. 2011;108:4531–4538. doi: 10.1073/pnas.1000098107. PubMed DOI PMC
Bode L.M., Bunzel D., Huch M., Cho G.S., Ruhland D., Bunzel M., Bub A., Franz C.M., Kulling S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295. doi: 10.3945/ajcn.112.049379. PubMed DOI
Tsang S.W., Guan Y.F., Wang J., Bian Z.X., Zhang H.J. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: Implication for treatment of acute pancreatitis. Sci. Rep. 2016;6:22859. doi: 10.1038/srep22859. PubMed DOI PMC
Lin Z.-S., Ku C.F., Guan Y.-F., Xiao H.-T., Shi X.-K., Wang H.-Q., Bian Z.-X., Tsang S.W., Zhang H.-J. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis. Phytother. Res. 2016;30:663–670. doi: 10.1002/ptr.5576. PubMed DOI
Jung C.M., Heinze T.M., Schnackenberg L.K., Mullis L.B., Elkins S.A., Elkins C.A., Steele R.S., Sutherland J.B. Interaction of dietary resveratrol with animal-associated bacteria. FEMS Microbiol. Lett. 2009;297:266–273. doi: 10.1111/j.1574-6968.2009.01691.x. PubMed DOI
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Walle U.K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Wang D., Hang T., Wu C., Liu W. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;829:97–106. doi: 10.1016/j.jchromb.2005.09.040. PubMed DOI
Jaimes J.D., Jarosova V., Vesely O., Mekadim C., Mrazek J., Marsik P., Killer J., Smejkal K., Kloucek P., Havlik J. Effect of selected stilbenoids on human fecal microbiota. Molecules. 2019;24:744. doi: 10.3390/molecules24040744. PubMed DOI PMC
Sun Y., Wu X., Cai X., Song M., Zheng J., Pan C., Qiu P., Zhang L., Zhou S., Tang Z., et al. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol. Nutr. Food Res. 2016;60:1924–1932. doi: 10.1002/mnfr.201500989. PubMed DOI
González-Barrio R., Edwards C.A., Crozier A. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: In vivo and in vitro studies. Drug Metab. Dispos. 2011;39:1680–1688. doi: 10.1124/dmd.111.039651. PubMed DOI
Jaganath I.B., Mullen W., Lean M.E.J., Edwards C.A., Crozier A. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic. Biol. Med. 2009;47:1180–1189. doi: 10.1016/j.freeradbiomed.2009.07.031. PubMed DOI
Mutual Interactions of Silymarin and Colon Microbiota in Healthy Young and Healthy Elder Subjects
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids
Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model
Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota