Metabolism of Stilbenoids by Human Faecal Microbiota

. 2019 Mar 23 ; 24 (6) : . [epub] 20190323

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30909544

Grantová podpora
16-07193S Grantová Agentura České Republiky
CIGA 20172031 Česká Zemědělská Univerzita v Praze
METROFOOD-CZ LM2018100 Ministerstvo Školství, Mládeže a Tělovýchovy

Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum. The samples of metabolized stilbenoids were collected at 0, 2, 4, 8, 24, and 48 h. Significant differences in the microbial transformation among stilbene derivatives were observed by liquid chromatography mass spectrometry (LC/MS). Four stilbenoids (resveratrol, oxyresveratrol, piceatannol and thunalbene) were metabolically transformed by double bond reduction, dihydroxylation, and demethylation, while batatasin III and pinostilbene were stable under conditions simulating the colon environment. Strong inter-individual differences in speed, intensity, and pathways of metabolism were observed among the faecal samples obtained from the donors.

Zobrazit více v PubMed

Reinisalo M., Kårlund A., Koskela A., Kaarniranta K., Karjalainen R.O. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell. Longev. 2015;2015:1–24. doi: 10.1155/2015/340520. PubMed DOI PMC

Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F. PubMed DOI

Sánchez-Fidalgo S., Cárdeno A., Villegas I., Talero E., de la Lastra C.A. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur. J. Pharmacol. 2010;633:78–84. doi: 10.1016/j.ejphar.2010.01.025. PubMed DOI

Leláková V., Šmejkal K., Jakubczyk K., Veselý O., Landa P., Václavík J., Bobá’ P., Pížová H., Temml V., Steinacher T., et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI

Kairisalo M., Bonomo A., Hyrskyluoto A., Mudò G., Belluardo N., Korhonen L., Lindholm D. Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells. Neurosci. Lett. 2011;488:263–266. doi: 10.1016/j.neulet.2010.11.042. PubMed DOI

Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh J., Mikolás E., Szijártó I.A., Mérei Á., Halmai R., et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr. 2011;106:383–389. doi: 10.1017/S0007114511000316. PubMed DOI

Buryanovskyy L., Fu Y., Boyd M., Ma Y., Hsieh T.C., Wu J.M., Zhang Z. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. 2004;43:11417–11426. doi: 10.1021/bi049162o. PubMed DOI PMC

Smoliga J.M., Blanchard O. Enhancing the delivery of resveratrol in humans: If low bioavailability is the problem, what is the solution? Molecules. 2014;19:17154–17172. doi: 10.3390/molecules191117154. PubMed DOI PMC

Liu M., Wilk S.A., Wang A., Zhou L., Wang R.H., Ogawa W., Deng C., Dong L.Q., Liu F. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 2010;285:36387–36394. doi: 10.1074/jbc.M110.169284. PubMed DOI PMC

Piotrowska H., Kucinska M., Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. Rev. Mutat. Res. 2012;750:60–82. doi: 10.1016/j.mrrev.2011.11.001. PubMed DOI

Seyed M.A., Jantan I., Bukhari S.N.A., Vijayaraghavan K. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. J. Agric. Food Chem. 2016;64:725–737. doi: 10.1021/acs.jafc.5b05993. PubMed DOI

Murias M., Handler N., Erker T., Pleban K., Ecker G., Saiko P., Szekeres T., Jäger W. Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. Bioorganic Med. Chem. 2004;12:5571–5578. doi: 10.1016/j.bmc.2004.08.008. PubMed DOI

Allen E.N., Potdar S., Tapias V., Parmar M., Mizuno C.S., Rimando A., Cavanaugh J.E. Resveratrol and pinostilbene confer neuroprotection against aging-related deficits through an ERK1/2-dependent mechanism. J. Nutr. Biochem. 2018;54:77–86. doi: 10.1016/j.jnutbio.2017.10.015. PubMed DOI PMC

Xu L., Liu C., Xiang W., Chen H., Qin X., Huang X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 2014;10:44–54. doi: 10.3923/ijp.2014.44.54. DOI

Kantartzis K., Fritsche L., Bombrich M., Machann J., Schick F., Staiger H., Kunz I., Schoop R., Lehn-Stefan A., Heni M., et al. Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes. Metab. 2018;20:1793–1797. doi: 10.1111/dom.13268. PubMed DOI

Qiang L., Di Y., Jiang Z., Xu J. Resveratrol improves efficacy of oral amoxicillin against childhood fast breathing pneumonia in a randomized placebo-controlled double blind clinical trial. Microb. Pathog. 2018;114:209–212. doi: 10.1016/j.micpath.2017.11.062. PubMed DOI

Sattarinezhad A., Roozbeh J., Shirazi Yeganeh B., Omrani G.R., Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab. 2018;45:53–59. doi: 10.1016/j.diabet.2018.05.010. PubMed DOI

Wang P., Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors. 2018;44:16–25. doi: 10.1002/biof.1410. PubMed DOI

Van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., Van Velzen E.J., Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA. 2011;108:4531–4538. doi: 10.1073/pnas.1000098107. PubMed DOI PMC

Bode L.M., Bunzel D., Huch M., Cho G.S., Ruhland D., Bunzel M., Bub A., Franz C.M., Kulling S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295. doi: 10.3945/ajcn.112.049379. PubMed DOI

Tsang S.W., Guan Y.F., Wang J., Bian Z.X., Zhang H.J. Inhibition of pancreatic oxidative damage by stilbene derivative dihydro-resveratrol: Implication for treatment of acute pancreatitis. Sci. Rep. 2016;6:22859. doi: 10.1038/srep22859. PubMed DOI PMC

Lin Z.-S., Ku C.F., Guan Y.-F., Xiao H.-T., Shi X.-K., Wang H.-Q., Bian Z.-X., Tsang S.W., Zhang H.-J. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis. Phytother. Res. 2016;30:663–670. doi: 10.1002/ptr.5576. PubMed DOI

Jung C.M., Heinze T.M., Schnackenberg L.K., Mullis L.B., Elkins S.A., Elkins C.A., Steele R.S., Sutherland J.B. Interaction of dietary resveratrol with animal-associated bacteria. FEMS Microbiol. Lett. 2009;297:266–273. doi: 10.1111/j.1574-6968.2009.01691.x. PubMed DOI

Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Walle U.K. High Absorption but Very Low Bioavailability of Oral Resveratrol in Humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI

Wang D., Hang T., Wu C., Liu W. Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005;829:97–106. doi: 10.1016/j.jchromb.2005.09.040. PubMed DOI

Jaimes J.D., Jarosova V., Vesely O., Mekadim C., Mrazek J., Marsik P., Killer J., Smejkal K., Kloucek P., Havlik J. Effect of selected stilbenoids on human fecal microbiota. Molecules. 2019;24:744. doi: 10.3390/molecules24040744. PubMed DOI PMC

Sun Y., Wu X., Cai X., Song M., Zheng J., Pan C., Qiu P., Zhang L., Zhou S., Tang Z., et al. Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Mol. Nutr. Food Res. 2016;60:1924–1932. doi: 10.1002/mnfr.201500989. PubMed DOI

González-Barrio R., Edwards C.A., Crozier A. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: In vivo and in vitro studies. Drug Metab. Dispos. 2011;39:1680–1688. doi: 10.1124/dmd.111.039651. PubMed DOI

Jaganath I.B., Mullen W., Lean M.E.J., Edwards C.A., Crozier A. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic. Biol. Med. 2009;47:1180–1189. doi: 10.1016/j.freeradbiomed.2009.07.031. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...