• This record comes from PubMed

Performance and Meat Quality of Dual-Purpose Cockerels of Dominant Genotype Reared on Pasture

. 2020 Feb 27 ; 10 (3) : . [epub] 20200227

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
MZE-RO0719 Ministerstvo Zemědělství
QK1910387 Ministerstvo Zemědělství

The culling of layer cockerels due to economic inefficiency is an ethical problem. Organic or free-range fattening of these cockerels or dual-purpose genotypes breeding is a possible solution to this problem. The aim of the study was to assess the differences in performance and meat quality characteristics in dual-purpose cockerels Dominant of three genotypes (Dominant Sussex D 104, Dominant Brown D 102 and Dominant Tinted D 723, 100 cockerels per genotype) with access to pasture. The cockerels were housed in mobile boxes on the pasture herbage from the 50th to 77th day of age (stocking density: 0.108 m2/bird). The highest body weight on the 77th day of age (p < 0.001) and the nonsignificantly lowest feed conversion was achieved by Dominant Brown D 102 cockerels (1842 g and 2.79, respectively). Non-significantly higher pasture herbage intake on the 70th day of age was recorded in genotype Dominant Brown D 102 (7.41 g dry matter (DM)/bird/day) and Dominant Tinted D 723 (7.52 g DM/bird/day). The pasture herbage contained 56.9 mg/kg DM α-tocopherol, 170.3 mg/kg DM zeaxanthin and 175.0 mg/kg DM lutein and had a favourable n6/n3 ratio (0.26). The boiled meat of cockerels Dominant Tinted D723 showed the highest tenderness based on both the sensory evaluation (p = 0.022) and the value of shear force (p = 0.049). This corresponds with a higher (p < 0.001) cross-sectional area and muscle fibre diameter in these chickens. The highest content of n3 fatty acids (eicosapentaenoic, clupanodonic and docosahexaenoic acids) in breast meat were found in Dominant Sussex D104 chickens (p < 0.001). In contrast, a significantly higher α-tocopherol content (p < 0.001) and higher oxidative stability (p = 0.012) were found in Dominant Brown D102 (4.52 mg/kg and 0.282 mg/kg) and Dominant Tinted D 723 chickens (4.64 mg/kg and 0.273 mg/kg) in comparison with the Dominant Sussex D104 genotype (3.44 mg/kg and 0.313 mg/kg). The values of the atherogenic and thrombogenic indexes were the lowest (p < 0.001) in meat from Dominant Brown D102 chickens. Moreover, a lower cholesterol content (p < 0.001) was recorded from the genotypes Dominant Brown D102 (396 mg/kg) and Dominant Tinted D723 (306 mg/kg) chickens, contrary to the Dominant Sussex D104 cockerels (441 mg/kg). It can be concluded that cockerels Dominant Brown D102 are a suitable genotype for free-range rearing due to higher performance and higher pasture herbage intake, which positively influences meat quality, whereas the meat of Dominant Sussex D104 cockerels shows higher amounts of n3 fatty acids and lower n6/n3 ratios.

See more in PubMed

European Commission (EC) Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. European Commission; Brussels, Belgium: 2008.

Dal Bosco A., Mugnai C., Sirri F., Zamparini C., Castellini C. Assessment of a global positioning system to evaluate activities of organic chickens at pasture. J. Appl. Poult. Res. 2010;19:213–218. doi: 10.3382/japr.2010-00153. DOI

Sirri F., Castellini C., Bianchi M., Petracci M., Meluzzi A., Franchini A. Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method. Animal. 2011;5:312–319. doi: 10.1017/S175173111000176X. PubMed DOI

Adamski M., Kuźniacka J., Banaszak M. The effects of strain and caponisation on carcass and meat traits of cockerels aged twenty weeks. Ann. Anim. Sci. 2016;16:1227–1239. doi: 10.1515/aoas-2016-0049. DOI

Adamski M., Kuźniacka J., Banaszak M., Wegner M. The analysis of meat traits of Sussex cockerels and capons (S11) at different ages. Poult. Sci. 2016;95:125–132. doi: 10.3382/ps/pev308. PubMed DOI

Kuźniacka J., Adamski M., Banaszak M., Huse-Wesolek H., Biesek J. Comparison of carcass, meat and bone characteristics of 16-week-old cockerels and capons of various origin. Eur. Poult. Sci. 2017;81:3169–3175. doi: 10.3382/ps/pex140. PubMed DOI

Bruijnis M.R.N., Blok V., Stassen E.N., Gremmen H.G.J. Moral “Lock-In” in Responsible Innovation: The Ethical and Social Aspects of Killing Day-Old Chicks and Its Alternatives. J. Agric. Environ. Ethics. 2015;28:939–960. doi: 10.1007/s10806-015-9566-7. DOI

Dal Bosco A., Mungai C., Ruggeri S., Mattioli S., Castelini C. Fatty acid composition of meat and estimated indices of lipid metabolism in different poultry genotypes reared under organic system. Poult. Sci. 2012;91:2039–2045. doi: 10.3382/ps.2012-02228. PubMed DOI

Alessandri J.M., Extier A., Al-Gubory K.H., Harbeby E., Lallemand M., Linard A., Lavialle M., Guesnet P. Influence of gender on DHA synthesis: The response of rat liver to low dietary α-linolenic acid evidences higher ω3 Δ4-desaturation index in females. Eur. J. Nutr. 2012;51:199–209. doi: 10.1007/s00394-011-0208-1. PubMed DOI

Glatz P.C., Ru Y.J., Miao Z.H., Wyatt S.K., Rodda B.J. Integrating poultry into a crop and pasture farming system. Int. J. Poult. Sci. 2005;4:187–191.

Lorenz C., Kany T., Grashorn M.A. Method to estimate feed intake from pasture in broilers and laying hens. Arch. Geflugelkd. 2013;77:160–165.

Mugnai C., Dal Bosco A., Castellini C. Effect of rearing system and season on the performance and egg characteristics of Ancona laying hens. Ital. J. Anim. Sci. 2009;8:175–188. doi: 10.4081/ijas.2009.175. DOI

Sossidou E.N., Dal Bosco A., Castelini C., Grashorn M.A. Effects of pasture management on poultry welfare and meat quality in organic poultry production systems. Worlds Poult. Sci. J. 2015;71:375–384. doi: 10.1017/S0043933915000379. DOI

Ponte P.I.P., Prates J.A.M., Crespo J.P., Crespo D.G., Mourão J.L., Alves S.P., Bessa R.J.B., Chaveiro-Soares M.A., Gama L.T., Ferreira L.M.A., et al. Restricting the intake of a cereal-based feed in free-range-pastured poultry: Effects on performance and meat quality. Poult. Sci. 2008;87:2032–2042. doi: 10.3382/ps.2007-00522. PubMed DOI

Michalczuk M., Zdanowska-Sasiadek Z., Damaziak K., Niemiec J. Influence of indoor and outdoor systems on meat quality of slow-growing chickens. CyTA J. Food. 2017;15:15–20. doi: 10.1080/19476337.2016.1196246. DOI

Michiels J., Tagliabue M.M., Akbarian A., Ovyn A., De Smet S. Oxidative status, meat quality and fatty acid profile of broiler chickens reared under free-range and severely feed-restricted conditions compared with conventional indoor rearing. Avian Biol. Res. 2014;7:74–82. doi: 10.3184/175815514X13950522688554. DOI

Wang K.H., Shi S.R., Dou T.C., Sun H.J. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken. Poult. Sci. 2009;88:2219–2223. doi: 10.3382/ps.2008-00423. PubMed DOI

Dal Bosco A., Mungai C., Rossati A., Paoletti A., Caporali S., Castelini C. Effect of range enrichment on performance, behavior and forage intake of free-range chickens. J. Appl. Poult. Res. 2014;23:137–145. doi: 10.3382/japr.2013-00814. DOI

Bureš D., Bartoň L., Kotrba R., Hakl J. Quality attributes and composition of meat from red deer (Cervus elephus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus) J. Sci. Food Agric. 2014;95:2159–2354. PubMed

International Organisation for Standardisation . ISO Standard No 8586-1. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors. International Organisation for Standardisation; Geneva, Switzerland: 1993.

Folch J.M., Lees M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. PubMed

Raes K., De Smet S., Balcaen A., Claeys E., Demeyer D. Effects of diets rich in N-3 polyunsatured fatty acids on muscle lipids and fatty acids in Belgian Blue double-muscled young bulls. Reprod. Nutr. Dev. 2003;43:331–345. doi: 10.1051/rnd:2003029. PubMed DOI

Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: Seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M. PubMed DOI

Cortinas L., Galobart J., Barroeta A.C., Baucells M.D., Grashorn M.A. Change in α-tocopherol contents, lipid oxidation and fatty acid profile in eggs enriched with linolenic acid or very long-chain w3 polyunsaturated fatty acids after different processing methods. J. Sci. Food Agric. 2003;83:820–829. doi: 10.1002/jsfa.1418. DOI

Santos-Silva J., Bessa R.J.B., Santos-Silva F. Effects of genotype, feeding system and slaughter weight on the quality of light lambs. Fatty acid composition of meat. Livest. Prod. Sci. 2002;77:187–194. doi: 10.1016/S0301-6226(02)00059-3. DOI

Froescheis O., Moalli S., Liechti H., Bausch J. Determination of lycopene in tissues and plasma of rats by normal-phase high-performance liquid chromatography with photometric detection. J. Chromatogr. B. 2000;739:291–299. doi: 10.1016/S0378-4347(99)00562-9. PubMed DOI

European Committee for Standardization . EN 12822. Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of α-, β-, γ- and δ-Tocopherols. European Committee for Standardization; Brussels, Belgium: 2000.

European Committee for Standardization . EN 12823-1. Foodstuffs—Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-cis-Retinol. European Committee for Standardization; Brussels, Belgium: 2000.

Czauderna M., Kowalczyk J., Marounek M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B. 2011;879:2251–2258. doi: 10.1016/j.jchromb.2011.06.008. PubMed DOI

SAS . SAS/STAT User’s Guide (Release 9.3) SAS Institute; Cary, NC, USA: 2003.

Mueller S., Kreuzer M., Siegrist K., Mannale R.E., Messikommer I., Gangnat D. Carcass and meat quality of dualpurpose chickens (Lohmann Dual, Belgian Malines, Schweizerhuhn) in comparison to broiler and layer chicken types. Poult. Sci. 2018;97:3325–3336. doi: 10.3382/ps/pey172. PubMed DOI

Jelínková P. Master’s Thesis. Mendel University in Brno; Brno, Czech Republic: 2015. Fattening of the Layer Males.

Almasi A., Andrassyne B.G., Milisits G., Kustosne P.O., Suto Z. Effects of different rearing systems on muscle and meat quality traits of slow- and medium-growing male chickens. Br. Poult. Sci. 2015;56:320–324. doi: 10.1080/00071668.2015.1016478. PubMed DOI

Muth P.C., Ghaziani S., Klaiber I., Zárate A.V. Are carcass and meat quality of male dual-purpose chickens competitive compared to slow-growing broilers reared under a welfare-enhanced organic system? Org. Agric. 2018;8:57–68. doi: 10.1007/s13165-016-0173-3. DOI

Glamoclija N., Starcevic M., Janjic N., Ivanovic J., Boskovic M., Djordjevic J., Markovic R., Baltic M.Z. The effect of breed line and age on measurements of pH-value as meat quality parameter in breast muscles (m. pectoralis major) of broiler chickens. Procedia Food Sci. 2015;5:89–92. doi: 10.1016/j.profoo.2015.09.023. DOI

Berri C., Le Bihan-Duval E., Baeza E., Chartrin P., Picgirard L., Jehl N., Quentin M., Picard M., Duclos M.J. Further processing characteristics of breast and leg meat from fast-, medium- and slow-growing commercial chickens. Anim. Res. 2005;54:123–134. doi: 10.1051/animres:2005008. DOI

Berri C., Wacrenier N., Millet N., Le Bihan-Duval E. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poult. Sci. 2001;80:833–838. doi: 10.1093/ps/80.7.833. PubMed DOI

Michalczuk M., Łukasiewicz M., Zdanowska-Sąsiadek Ż., Niemiec J. Comparison of selected quality attributes of chicken meat as affected by rearing systems. Pol. J. Food Nutr. Sci. 2014;64:121–126. doi: 10.2478/v10222-012-0096-y. DOI

Debut M., Berri C., Baéza E., Sellier N., Arnould C., Guémené D., Jehl N., Boutten B., Jego Y., Beaumont C., et al. Variation of chicken meat quality in relation to genotype and stressing pre-slaughter conditions. Poult. Sci. 2003;82:1829–1838. doi: 10.1093/ps/82.12.1829. PubMed DOI

Fanatico A.C., Pillai P.B., Cavitt L.C., Owens C.M., Emmert J.L. Evaluation of slower growing broiler genotypes grown with and without outdoor access: Growth performance and carcass yield. Poult. Sci. 2005;84:1321–1327. doi: 10.1093/ps/84.8.1321. PubMed DOI

Touraille C., Ricard F.P., Kopp J., Valin C., Leclerq B. Chicken meat quality. 2 Changes with age of some physical chemical and sensory characteristics of the meat. Arch. Geflugelkd. 1981;45:97–104.

Lukasiewicz M., Niemiec J., Wnuk A., Mroczek-Sosnowska N. Meat quality and the histological structure of breast and leg muscles in Ayam Cemani chickens, Ayam Cemani x Sussex hybrids and slow-growing Hubbard JA 957 chickens. J. Sci. Food Agric. 2015;95:1730–1735. doi: 10.1002/jsfa.6883. PubMed DOI

Remignon H., Lefaucheur L., Blu J.C., Ricard F.H. Effects of divergent selection for body weight on three skeletal muscles characteristics in the chicken. Br. Poult. Sci. 1994;35:65–76. doi: 10.1080/00071669408417671. PubMed DOI

Cameron N.D., Oksbjerg N., Henckel P., Nute G., Brown S., Wood J.D. Relationships between Muscle Fibre Traits with Meat and Eating Quality in Pigs; Proceedings of the BSAS Annual Meeting; Scarborough, UK. 23–25 March 1998; p. 123.

Yang Y., Wen J., Fang G.Y., Li Z.R., Dong Z.Y., Liu J. The effects of raising system on the lipid metabolism and meat quality traits of slow-growing chickens. J. Appl. Anim. Res. 2015;43:147–152. doi: 10.1080/09712119.2014.928631. DOI

Castellini C., Dal Bosco A., Mugnai C., Pedrazzoli M. Comparison of two chicken genotypes organically reared: Oxidative stability and other qualitative traits of the meat. Ital. J. Anim. Sci. 2006;5:29–42. doi: 10.4081/ijas.2006.29. DOI

Skřivan M., Englmaierová M. The deposition of carotenoids and α-tocopherol in hen eggs produced under a combination of sequential feeding and grazing. Anim. Feed. Sci. Technol. 2014;190:79–86. doi: 10.1016/j.anifeedsci.2014.01.009. DOI

Dal Bosco A., Mugnai C., Mattioli S., Rosati A., Ruggeri S., Ranucci D., Castellini C. Transfer of bioactive compounds from pasture to meat in organic free-range chickens. Poult. Sci. 2016;95:2464–2471. doi: 10.3382/ps/pev383. PubMed DOI

Cartoni Mancinelli A., Mattioli S., Dal Bosco A., Piottoli L., Ranucci D., Branciari R., Cotozzolo E., Castellini C. Rearing Romagnola geese in vineyard: Pasture and antioxidant intake, performance, carcass and meat quality. Ital. J. Anim. Sci. 2019;18:372–380. doi: 10.1080/1828051X.2018.1530960. DOI

Skřivan M., Pickinpauhg S.H., Pavlů V., Skřivanová E., Englmaierová M. A mobile system for rearing meat chickens on pasture. Czech J. Anim. Sci. 2015;60:52–59. doi: 10.17221/7974-CJAS. DOI

Castellini C., Dal Bosco A., Mugnai C., Bernardini M. Performance and behaviour of chickens with different growing rate reared according to organic system. Ital. J. Anim. Sci. 2002;1:291–300. doi: 10.4081/ijas.2002.291. DOI

Mattioli S., Dal Bosco A., Ruggeri S., Martino M., Moscati L., Pesca C., Castellini C. Adaptive response to exercise of fast-growing and slow-growing chicken strains: Blood oxidative status and non-enzymatic antioxidant defense. Poult. Sci. 2017;96:4096–4102. doi: 10.3382/ps/pex203. PubMed DOI

Givens D.I., Gibbs R.A., Rymer C., Brown R.H. Effect of intensive vs. free range production on the fat and fatty acid composition of whole birds and edible portions of retail chickens in the UK. Food Chem. 2011;127:1549–1554. doi: 10.1016/j.foodchem.2011.02.016. DOI

Funaro A., Cardenia V., Petracci M., Rimini S., Rodriguez-Estrada M.T., Cavani C. Comparison of meat quality characteristics and oxidative stability between conventional and free-range chickens. Poult. Sci. 2014;93:1511–1522. doi: 10.3382/ps.2013-03486. PubMed DOI

Lizardo R., van Milgen J., Mourot J., Noblet J., Bonneau M. A nutritional model of fatty acid composition in the growing-finishing pig. Livest. Prod. Sci. 2002;75:167–182. doi: 10.1016/S0301-6226(01)00312-8. DOI

Zuidhof M.J., Betti M., Korver D.R., Hernandez F.I.L., Schneider B.L., Carney V.L., Renema R.A. Omega-3-enriched broiler meat: 1. Optimization of a production system. Poult. Sci. 2009;88:1108–1120. doi: 10.3382/ps.2008-00171. PubMed DOI

Skiba G., Poławska E., Sobol M., Raj S., Weremko D. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids. Arch. Anim. Nutr. 2015;69:1–16. doi: 10.1080/1745039X.2014.992173. PubMed DOI

Boschetti E., Bordoni A., Meluzzi A., Castellini C., Dal Bosco A., Sirri F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal. 2016;10:700–708. doi: 10.1017/S1751731115002712. PubMed DOI

Ponte P.I.P., Mendes I., Quaresma M., Aguiar M.N.M., Lemos J.P.C., Ferreira L.M.A., Soares M.A.C., Alfaia C.M., Prates J.A.M., Fontes C.M.G.A. Cholesterol levels and sensory characteristics of meat from broilers consuming moderate to high levels of alfalfa. Poult. Sci. 2004;83:810–814. doi: 10.1093/ps/83.5.810. PubMed DOI

Kerry J.P., Buckley D.J., Morrissey P.A. Improvement of oxidative stability of beef and lamb with vitamin E. In: Decker E.A., Faustman C., Lopez-Bote C., editors. Antioxidants in Muscle Foods. Wiley-Interscience; New York, NY, USA: 2000. pp. 229–262.

Qureshi A.A., Bradlow B.A., Salser W.A., Brace L.D. Novel tocotrienols of rice bran modulate cardiovascular disease parameters of hypercholesterolemic humans. Nutr. Biochem. 1997;8:290–298. doi: 10.1016/S0955-2863(97)89667-2. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...