Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing

. 2020 Mar 12 ; 10 (1) : 4619. [epub] 20200312

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32165679
Odkazy

PubMed 32165679
PubMed Central PMC7067791
DOI 10.1038/s41598-020-61465-6
PII: 10.1038/s41598-020-61465-6
Knihovny.cz E-zdroje

Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9) system has become a revolutionary tool for gene editing. Since viral delivery systems have significant side effects, and naked DNA delivery is not an option, the nontoxic, non-viral delivery of CRISPR/Cas9 components would significantly improve future therapeutic delivery. In this study, we aim at characterizing nanoparticles to deliver plasmid DNA encoding for the CRISPR-Cas system in eukaryotic cells in vitro. CRISPR/Cas9 complexed polyethylenimine (PEI) magnetic nanoparticles (MNPs) were generated. We used a stable HEK293 cell line expressing the traffic light reporter (TLR-3) system to evaluate efficient homology- directed repair (HDR) and non-homologous end joining (NHEJ) events following transfection with NPs. MNPs have been synthesized by co-precipitation with the average particle size around 20 nm in diameter. The dynamic light scattering and zeta potential measurements showed that NPs exhibited narrow size distribution and sufficient colloidal stability. Genome editing events were as efficient as compared to standard lipofectamine transfection. Our approach tested non-viral delivery of CRISPR/Cas9 and DNA template to perform HDR and NHEJ in the same assay. We demonstrated that PEI-MNPs is a promising delivery system for plasmids encoding CRISPR/Cas9 and template DNA and thus can improve safety and utility of gene editing.

Zobrazit více v PubMed

Jinek M, et al. A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Sci. 2012;337(6096):816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Niu Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/ RNA mediated gene targeting in one-cell embryos. Cell. 2014;156:836–843. doi: 10.1016/j.cell.2014.01.027. PubMed DOI

DiCarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat. Biotechnol. 2015;33:1250–1255. doi: 10.1038/nbt.3412. PubMed DOI PMC

Song, F. & Stieger, K. Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks, Molecular Therapy: Nucleic Acids, 7 (2017). PubMed PMC

Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Archivum Immunologiae et. Therapiae Experimentalis. 2017;65:233–240. doi: 10.1007/s00005-016-0427-5. PubMed DOI PMC

Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomater. 2018;171:207–218. doi: 10.1016/j.biomaterials.2018.04.031. PubMed DOI PMC

Xu LC, Ruan ZCM, Mahajan BV, Tsang HS. Viral Delivery Systems for CRISPR. Viruses. 2019;11(1):28. doi: 10.3390/v11010028. PubMed DOI PMC

Wu P, et al. Non-viral gene delivery systems for tissue repair and regeneration. J. Transl. Med. 2018;16:29. doi: 10.1186/s12967-018-1402-1. PubMed DOI PMC

Glass Z, Lee M, Li Y, Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018;36:173–185. doi: 10.1016/j.tibtech.2017.11.006. PubMed DOI PMC

Cheng WJ, et al. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int. J. Nanomed. 2018;13:7079–7094. doi: 10.2147/IJN.S181440. PubMed DOI PMC

Zhang L, et al. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy, NPG Asia. Mater. 2017;9:e441.

Lee B, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2018;2:497–507. doi: 10.1038/s41551-018-0252-8. PubMed DOI PMC

Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun. 10(1), 45 (2019 Jan 3). PubMed PMC

Dähring, H., Grandke, J., Teichgräber, U. & Hilger, I. Mol. Imaging Biol. 1–7 (2015). PubMed

Majidi, S.; et al Artif. Cells, Nanomed. Biotechnol. 1–8 (2015).

Tomitaka A, Koshi T, Hatsugai S, Yamada T, Takemura Y. Magnetic characterization of surface-coated magnetic nanoparticles for biomedical application. J. Magn. Magn Mater. 2010;323:1396–1403.

Boussif O, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA. 1995;92:7297–301. doi: 10.1073/pnas.92.16.7297. PubMed DOI PMC

Wang J, Gao L. Adsorption of polyethylenimine on nanosized zirconia particles in aqueous suspensions. J. Colloid Interface Sci. 1999;216:436–9. doi: 10.1006/jcis.1999.6308. PubMed DOI

Vancha AR, et al. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnol. 2004;4:23. doi: 10.1186/1472-6750-4-23. PubMed DOI PMC

Ramakrishna S, et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–1027. doi: 10.1101/gr.171264.113. PubMed DOI PMC

Lee. K, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 2017;1(890):889–901. doi: 10.1038/s41551-017-0137-2. PubMed DOI PMC

Mout R, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452–2458. doi: 10.1021/acsnano.6b07600. PubMed DOI PMC

Yue H, Zhou X, Cheng M, Xing D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale. 2018;10(3):1063–1071. doi: 10.1039/C7NR07999K. PubMed DOI

Hryhorowicz M, et al. Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Mol. Biotechnol. 2019;61:173–180. doi: 10.1007/s12033-018-0145-9. PubMed DOI

Tiwari, A. P., Rohiwal, S. S., Suryavanshi, M. V., Ghosh Saral, J. & Pawar, S. H. Detection of the genomic DNA of pathogenic α-proteobacterium Ochrobactrum anthropi via magnetic DNA enrichment using pH responsive BSA@Fe3O4 nanoparticles prior to in-situ PCR and electrophoretic separation. Microchimica Acta February, 183, (2), 675–681 (2016).

Plank C, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 2003;384:737–747. doi: 10.1515/BC.2003.082. PubMed DOI

Kami D, et al. Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J. Artif. Organs. 2011;14:215–222. doi: 10.1007/s10047-011-0568-6. PubMed DOI

Arsianti M, Lim M, Christopher Marquis P, Amal R. Assembly of Polyethylenimine-Based Magnetic Iron Oxide Vectors: Insights into Gene Delivery. Langmuir. 2010;26(10):7314–7326. doi: 10.1021/la9041919. PubMed DOI

Chen ZP, et al. Stability of hydrophilic magnetic nanoparticles under biologically relevant conditions. J. Nanosci. Nanotechnol. 2008;8:6260–6265. PubMed

Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668. doi: 10.1021/nl052396o. PubMed DOI

Namgung R, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomater. 2010;31:4204–4213. doi: 10.1016/j.biomaterials.2010.01.123. PubMed DOI

Arsianti M, Lim M, Marquis CP, Amal R. Polyethylenimine Based Magnetic Iron-Oxide Vector: The Effect of Vector Component Assembly on Cellular Entry Mechanism, Intracellular Localization, and Cellular Viability. Biomacromolecules. 2010;11:2521–2531. doi: 10.1021/bm100748p. PubMed DOI

Ahmad S, Riaz U, Kaushik A, Alam J. Soft Template Synthesis of Super Paramagnetic Fe3O4 Nanoparticles a Novel Technique. J. Inorg. Organomet. Polym. 2009;19:355. doi: 10.1007/s10904-009-9276-6. DOI

Sun X, et al. Size-Controlled Synthesis of Magnetite (Fe3O4) Nanoparticles Coated with Glucose and Gluconic Acid from a Single Fe(III) Precursor by a Sucrose Bifunctional Hydrothermal Method. J. Phys. Chem. C. 2009;113:16002. doi: 10.1021/jp9038682. DOI

Parikh SJ, Chorover J. ATR-FTIR Spectroscopy Reveals Bond Formation during Bacterial Adhesion to Iron Oxide. Langmuir. 2006;22:8492. doi: 10.1021/la061359p. PubMed DOI

Chen B, Su C, Tseng MC, T say S. Preparation of Polyetherimide Nanocomposites with Improved Thermal, Mechanical and Dielectric Properties. Polym. Bull. 2006;57:671–681. doi: 10.1007/s00289-006-0630-3. DOI

Cheng, W. J., Chen, L. C. & Ho, H. O. Hong-Liang Lin Ming-Thau Sheu, Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CR ISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy, International Journal of Nanomedicine, 13 (2018). PubMed PMC

Ma Y, Zhang Z, Wang X, Xia W, Gu H. Insights into the mechanism of magnetofection using MNPs-PEI/pDNA/free PEI magnetofectins. Int. J. Pharmaceutics. 2011;419:247–254. doi: 10.1016/j.ijpharm.2011.07.017. PubMed DOI

Grzeskowiak BF, et al. Nanomagnetic activation as a way to control the efficacy of nucleic acid delivery. Pharm. Res. 2015;32:103–121. doi: 10.1007/s11095-014-1448-6. PubMed DOI

Segura T, Shea LD. Materials for non-viral gene delivery. Annu. ReV. Mater. Res. 2001;31:25–46. doi: 10.1146/annurev.matsci.31.1.25. DOI

Brunner S, et al. Cell cycle dependence of gene transfer by lipoplex, polyplex, and recombinant adenovirus. Gene Ther. 2000;7:401–407. doi: 10.1038/sj.gt.3301102. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...