• This record comes from PubMed

The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine

. 2020 Oct ; 528 (14) : 2471-2495. [epub] 20200329

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.

See more in PubMed

Alreja, M., Shanabrough, M., Liu, W., & Leranth, C. (2000). Opioids suppress IPSCs in neurons of the rat medial septum/diagonal band of Broca: Involvement of mu-opioid receptors and septohippocampal GABAergic neurons. The Journal of Neuroscience, 20(3), 1179-1189. https://doi.org/10.1523/JNEUROSCI.20-03-01179.2000

Amir, S., Lamont, E. W., Robinson, B., & Stewart, J. (2004). A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. The Journal of Neuroscience, 24(4), 781-790. https://doi.org/10.1523/JNEUROSCI.4488-03.2004

Ammon-Treiber, S., & Höllt, V. (2005). Morphine-induced changes of gene expression in the brain. Addiction Biology, 10(1), 81-89. https://doi.org/10.1080/13556210412331308994

Arout, C. A., Caldwell, M., McCloskey, D. P., & Kest, B. (2014). C-Fos activation in the periaqueductal gray following acute morphine-3β-D-glucuronide or morphine administration. Physiology & Behavior, 130, 28-33. https://doi.org/10.1016/j.physbeh.2014.02.056

Baltazar, R. M., Coolen, L. M., & Webb, I. C. (2013). Diurnal rhythms in neural activation in the mesolimbic reward system: Critical role of the medial prefrontal cortex. The European Journal of Neuroscience, 38(2), 2319-2327. https://doi.org/10.1111/ejn.12224

Baver, S. B., Pickard, G. E., Sollars, P. J., & Pickard, G. E. (2008). Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. The European Journal of Neuroscience, 27(7), 1763-1770. https://doi.org/10.1111/j.1460-9568.2008.06149.x

Bendová, Z., Sládek, M., & Svobodová, I. (2012). The expression of NR2B subunit of NMDA receptor in the suprachiasmatic nucleus of Wistar rats and its role in glutamate-induced CREB and ERK1/2 phosphorylation. Neurochemistry International, 61(1), 43-47. https://doi.org/10.1016/j.neuint.2012.04.016

Benzler, J., Ganjam, G. K., Krüger, M., Pinkenburg, O., Kutschke, M., Stöhr, S., … Tups, A. (2012). Hypothalamic glycogen synthase kinase 3β has a central role in the regulation of food intake and glucose metabolism. The Biochemical Journal, 447(1), 175-184. https://doi.org/10.1042/BJ20120834

Bhargava, H. N., Villar, V. M., Rahmani, N. H., & Larsen, A. K. (1993). Time course of the distribution of morphine in brain regions, spinal cord and serum following intravenous injection to rats of differing ages. Pharmacology, 47(1), 13-23. https://doi.org/10.1159/000139073

Boom, M., Grefkens, J., van Dorp, E., Olofsen, E., Lourenssen, G., Aarts, L., … Sarton, E. (2010). Opioid chronopharmacology: Influence of timing of infusion on fentanyl's analgesic efficacy in healthy human volunteers. Journal of Pain Research, 3, 183-190. https://doi.org/10.2147/JPR.S13616

Bubb, E. J., Kinnavane, L., & Aggleton, J. P. (2017). Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide. Brain Neurosci Adv, 1(1), 2398212817723443. https://doi.org/10.1177/2398212817723443

Buhr, E. D., & Takahashi, J. S. (2013). Molecular components of the mammalian circadian clock. Handbook of Experimental Pharmacology, 217, 3-27. https://doi.org/10.1007/978-3-642-25950-0_1

Buzsáki, G. (2005). Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15(7), 827-840. https://doi.org/10.1002/hipo.20113

Castañeda, T. R., de Prado, B. M., Prieto, D., & Mora, F. (2004). Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: Modulation by light. Journal of Pineal Research, 36(3), 177-185. https://doi.org/10.1046/j.1600-079X.2003.00114.x

Cermakian, N., Lamont, E. W., Boudreau, P., & Boivin, D. B. (2011). Circadian clock gene expression in brain regions of Alzheimer's disease patients and control subjects. Journal of Biological Rhythms, 26(2), 160-170. https://doi.org/10.1177%2F0748730410395732

Chang, S. L., & Harlan, R. E. (1990). The fos proto-oncogene protein: Regulation by morphine in the rat hypothalamus. Life Sciences, 46(25), 1825-1832. https://doi.org/10.1016/0024-3205(90)90233-H

Chudler, E. H., & Dong, W. K. (1995). The role of the basal ganglia in nociception and pain. Pain, 60(1), 3-38. https://doi.org/10.1016/0304-3959(94)00172-B

Chung, S., Lee, E. J., Yun, S., Choe, H. K., Park, S. B., Son, H. J., … Kim, K. (2014). Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell, 157(4), 858-868. https://doi.org/10.1016/j.cell.2014.03.039

Cline, G. W., Johnson, K., Regittnig, W., Perret, P., Tozzo, E., Xiao, L., … Shulman, G. I. (2002). Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes, 51, 2903-2910. https://doi.org/10.2337/diabetes.51.10.2903

Dehpour, A. R., Farsam, H., & Azizabadi-Farahani, M. (1994). The effect of lithium on morphine-induced analgesia in mice. General Pharmacology, 25, 1635-1641. https://doi.org/10.1016/0306-3623(94)90365-4

Delay-Goyet, P., Zajac, J. M., & Roques, B. P. (1990). Improved quantitative radioautography of rat brain ?-opioid binding sites using [(3)H]DSTBULET, a new highly potent and selective linear enkephalin analogue. Neurochemistry International, 16(3), 341-368. https://doi.org/10.1016/0197-0186(90)90112-7

Deurveilher, S., Burns, J., & Semba, K. (2002). Indirect projections from the suprachiasmatic nucleus to the ventrolateral preoptic nucleus: A dual tract-tracing study in rat. The European Journal of Neuroscience, 16(7), 1195-1213. https://doi.org/10.1016/j.neuroscience.2004.08.030

Dong, H.-W., & Swanson, L. W. (2006). Projections from bed nuclei of the Stria terminalis, dorsomedial nucleus: Implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. The Journal of Comparative Neurology, 494(1), 75-107. https://doi.org/10.1002/cne.20790

Eitan, S., Bryant, C. D., Saliminejad, N., Yang, Y. C., Vojdani, E., Keith, D., Jr., … Evans, C. J. (2003). Brain region-specific mechanisms for acute morphine-induced mitogen-activated protein kinase modulation and distinct patterns of activation during analgesic tolerance and locomotor sensitization. The Journal of Neuroscience, 23(23), 8360-8369. https://doi.org/10.1523/JNEUROSCI.23-23-08360.2003

Farahmandfar, M., Karimian, S. M., Zarrindast, M. R., Kadivar, M., Afrouzi, H., & Naghdi, N. (2011). Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via μ-opioid receptor. Neuroscience Letters, 494(2), 130-134. https://doi.org/10.1016/j.neulet.2011.02.074

Filipovská, E., Červená, K., Moravcová, S., Novotný, J., Kyclerová, H., Spišská, V., … Bendová, Z. (2019). The effect of the cannabinoid receptor agonist and antagonist on the light-induced changes in the suprachiasmatic nucleus of rats. Neuroscience Letters, 703, 49-52. https://doi.org/10.1016/j.neulet.2019.03.022

Gabra, B. H., Bailey, C. P., Kelly, E., Sanders, A. V., Henderson, G., Smith, F. L., & Dewey, W. L. (2007). Evidence for an important role of protein phosphatases in the mechanism of morphine tolerance. Brain Research, 1159, 86-93. https://doi.org/10.1016/j.brainres.2007.05.017

Garcia, M. M., Brown, H. E., & Harlan, R. E. (1995). Alterations in immediate-early gene proteins in the rat forebrain induced by acute morphine injection. Brain Research, 692(1-2), 23-40. https://doi.org/10.1016/0006-8993(95)00625-Z

Garmabi, B., Vousooghi, N., Vosough, M., Yoonessi, A., Bakhtazad, A., & Zarrindast, M. R. (2016). Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor. Neuroscience, 322, 104-114. https://doi.org/10.1016/j.neuroscience.2016.02.019

Gazyakan, E., Disko, U., Haaf, A., Heimrich, B., & Jackisch, R. (2000). Postnatal development of opioid receptors modulating acetylcholine release in hippocampus and septum of the rat. Brain Research. Developmental Brain Research, 123(2), 135-141. https://doi.org/10.1016/S0165-3806(00)00091-2

Gholizadeh, S., Sun, N., De Jaeger, X., Bechard, M., Coolen, L., & Laviolette, S. R. (2013). Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala-prefrontal cortical pathway. PLoS One, 8(5), e63612. https://doi.org/10.1371/journal.pone.0063612

Glass, M. J., Kruzich, P. J., Colago, E. E., Kreek, M. J., & Pickel, V. M. (2005). Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse, 58(1), 1-12. https://doi.org/10.1002/syn.20176

Golpich, M., Amini, E., Hemmati, F., Ibrahim, N. M., Rahmani, B., Mohamed, Z., … Ahmadiani, A. (2015). Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease. Pharmacological Research, 97, 16-26. https://doi.org/10.1016/j.phrs.2015.03.010

Goutagny, R., Manseau, F., Jackson, J., Danik, M., & Williams, S. (2008). In vitro activation of the medial septum-Diagonal band complex generates atropine-sensitive and atropine-resistant hippocampal theta rhythm: An investigation using a complete septohippocampal preparation. Hippocampus, 18(6), 531-535. https://doi.org/10.1002/hipo.20418

Gross, E. R., Hsu, A. K., & Gross, G. J. (2004). Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circulation Research, 94, 960-966. https://doi.org/10.1161/01.RES.0000122392.33172.09

Gutstein, H. B., Thome, J. L., Fine, J. L., Watson, S. J., & Akil, H. (1998). Pattern of c-fos mRNA induction in rat brain by acute morphine. Canadian Journal of Physiology and Pharmacology, 76(3), 294-303. https://doi.org/10.1139/y98-027

Harbour, V. L., Robinson, B., & Amir, S. (2011). Variations in daily expression of the circadian clock protein, PER2, in the rat limbic forebrain during stable entrainment to a long light cycle. Journal of Molecular Neuroscience, 45(2), 154-161. https://doi.org/10.1007/s12031-010-9469-z

Harbour, V. L., Weigl, Y., Robinson, B., & Amir, S. (2013). Comprehensive mapping of regional expression of the clock protein PERIOD2 in rat forebrain across the 24-h day. PLoS One, 8(10), e76391. https://doi.org/10.1371/journal.pone.0076391

Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. The Journal of Comparative Neurology, 497(3), 326-349. https://doi.org/10.1002/cne.20970

He, Y. Y., Xue, Y. X., Wang, J. S., Fang, Q., Liu, J. F., Xue, L. F., & Lu, L. (2011). PKMzeta maintains drug reward and aversion memory in the basolateral amygdala and extinction memory in the infralimbic cortex. Neuropsychopharmacology, 36, 1972-1981. https://doi.org/10.1038/npp.2011.63

Helmstetter, F. J., Bellgowan, P. S., & Poore, L. H. (1995). Microinfusion of mu but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail flick reflex in pentobarbital-anesthetized rats. The Journal of Pharmacology and Experimental Therapeutics, 275, 381-388. http://jpet.aspetjournals.org/content/275/1/381

Hetman, M., Gozdz, A. (2004). Role of extracellular signal regulated kinases 1 and 2 inneuronal survival. European Journal of Biochemistry, 271(11), 2050-2055.

Jafari-Sabet, M., & Jannat-Dastjerdi, I. (2009). Muscimol state-dependent memory: Involvement of dorsal hippocampal mu-opioid receptors. Behavioural Brain Research, 202(1), 5-10. https://doi.org/10.1016/j.bbr.2009.03.010

Jasmin, L., Rabkin, S. D., Granato, A., Boudah, A., & Ohara, P. T. (2003). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature, 424(6946), 316-320. https://doi.org/10.1038/nature01808

Jia, W., Liu, R., Shi, J., Wu, B., Dang, W., Du, Y., … Zhang, R. (2013). Differential regulation of MAPK phosphorylation in the dorsal hippocampus in response to prolonged morphine withdrawal-induced depressive-like symptoms in mice. PLoS One, 8(6), e66111. https://doi.org/10.1371/journal.pone.0066111

Johnston, I. N., & Westbrook, R. F. (2004). Inhibition of morphine analgesia by lithium: Role of peripheral and central opioid receptors. Behavioural Brain Research, 151, 151-158. https://doi.org/10.1016/j.bbr.2003.08.022

Kaidanovich-Beilin, O., & Eldar-Finkelman, H. (2006). Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in Ob/Ob mice: Molecular characterization in liver and muscle. The Journal of Pharmacology and Experimental Therapeutics, 316, 17-24. https://doi.org/10.1124/jpet.105.090266

Kalsbeek, A., la Fleur, S., & Fliers, E. (2014). Circadian control of glucose metabolism. Molecular Metabolism, 3(4), 372-383. https://doi.org/10.1016/j.molmet.2014.03.002

Karakucuk, E. H., Yamanoglu, T., Demirel, O., Bora, N., & Zengil, H. (2006). Temporal variation in drug interaction between lithium and morphine-induced analgesia. Chronobiology International, 23(3), 675-682. https://doi.org/10.1080/07420520600650745

Kayser, V., Benoist, J. M., Neil, A., Gautron, M., & Guilbaud, G. (1988). Behavioural and electrophysiological studies on the paradoxical antinociceptive effects of an extremely low dose of naloxone in an animal model of acute and localized inflammation. Experimental Brain Research, 73(2), 402-410. https://doi.org/10.1007/BF00248233

Khajehpour, L., Rezayof, A., & Zarrindast, M. R. (2008). Involvement of dorsal hippocampal nicotinic receptors in the effect of morphine on memory retrieval in passive avoidance task. European Journal of Pharmacology, 584(2-3), 343-351. https://doi.org/10.1016/j.ejphar.2008.02.030

Khakpai, F., Nasehi, M., Haeri-Rohani, A., Eidi, A., & Zarrindast, M. R. (2013). Septo-Hippocampo-septal loop and memory formation. Basic and Clinical Neuroscience, 4(1), 5-23.

Kim, Y. J., Kang, Y., Park, H. Y., Lee, J. R., Yu, D. Y., Murata, T., … Kim, K. S. (2016). STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance. Experimental & Molecular Medicine, 48, e212. https://doi.org/10.1038/emm.2016.1

Kimura, T., Yamashita, S., Nakao, S., Park, J. M., Murayama, M., Mizoroki, T., … Takashima, A. (2008). GSK-3β is required for memory reconsolidation in adult brain. PLoS One, 3(10), e3540. https://doi.org/10.1371/journal.pone.0003540

King, B. M. (2006). The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiology & Behavior, 87(2), 221-244. https://doi.org/10.1016/j.physbeh.2005.10.007

King, M. K., Pardo, M., Cheng, Y., Downey, K., Jope, R. S., Beurel, E. (2014). Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacology Therapeutics, 141(1), 1-12. http://doi.org/10.1016/j.pharmthera.2013.07.010

Kirouac, G. J. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience and Biobehavioral Reviews, 56, 315-329. https://doi.org/10.1016/j.neubiorev.2015.08.005

Klemfuss, H., & Adler, M. W. (1986). Autonomic mechanisms for morphine and amphetamine mydriasis in the rat. The Journal of Pharmacology and Experimental Therapeutics, 238(3), 788-793.

Kolaj, M., Zhang, L., Rønnekleiv, O. K., & Renaud, L. P. (2012). Midline thalamic paraventricular nucleus neurons display diurnal variation in resting membrane potentials, conductances, and firing patterns in vitro. Journal of Neurophysiology, 107(7), 1835-1844. https://doi.org/10.1152/jn.00974.2011

Kovács, K. J. (1998). C-Fos as a transcription factor: A stressful (re)view from a functional map. Neurochemistry International, 33(4), 287-297. https://doi.org/10.1016/S0197-0186(98)00023-0

Lamont, E. W., Robinson, B., Stewart, J., & Amir, S. (2005). The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4180-4104. https://doi.org/10.1073/pnas.0500901102

Landry, G. J., Kent, B. A., Patton, D. F., Jaholkowski, M., Marchant, E. G., & Mistlberger, R. E. (2011). Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PLoS One, 6(9), e24187. https://doi.org/10.1371/journal.pone.0024187

Laorden, M. L., Núñez, C., Almela, P., & Milanés, M. V. (2002). Morphine withdrawal-induced c-fos expression in the hypothalamic paraventricular nucleus is dependent on the activation of catecholaminergic neurones. Journal of Neurochemistry, 83(1), 132-140. https://doi.org/10.1046/j.1471-4159.2002.01123.x

Leak, R. K., & Moore, R. Y. (2001). Topographic organization of suprachiasmatic nucleus projection neurons. The Journal of Comparative Neurology, 433(3), 312-334. https://doi.org/10.1002/cne.1142

Le Merrer, J., Cagniard, B., & Cazala, P. (2006). Modulation of anxiety by mu-opioid receptors of the lateral septal region in mice. Pharmacology, Biochemistry, and Behavior, 83(3), 465-479. https://doi.org/10.1016/j.pbb.2006.03.008

Li, C. L., Zhu, N., Meng, X. L., Li, Y. H., & Sui, N. (2013). Effects of inactivating the agranular or granular insular cortex on the acquisition of the morphine-induced conditioned place preference and naloxone-precipitated conditioned place aversion in rats. Journal of Psychopharmacology, 27(9), 837-844. https://doi.org/10.1177%2F0269881113492028

Liu, J., Nickolenko, J., & Sharp, F. R. (1994). Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proceedings of the National Academy of Sciences of the United States of America, 91(18), 8537-8541. https://doi.org/10.1073/pnas.91.18.8537

Liu, K., Kim, J., Kim, D. W., Zhang, Y. S., Bao, H., Denaxa, M., … Blackshaw, S. (2017). Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature, 548(7669), 582-587. https://doi.org/10.1038/nature23663

Liu, Q., Zhang, M., Qin, W. J., Wang, Y. T., Li, Y. L., Jing, L., … Liang, J. H. (2012). Septal nuclei critically mediate the development of behavioral sensitization to a single morphine injection in rats. Brain Research, 1454, 90-99. https://doi.org/10.1016/j.brainres.2012.03.027

Lobb, C. J., & Jaeger, D. (2015). Bursting activity of substantia nigra pars reticulata neurons in mouse parkinsonism in awake and anesthetized states. Neurobiology of Disease, 75, 177-185. https://doi.org/10.1016/j.nbd.2014.12.026

Lu, C. B., Ouyang, G., Henderson, Z., & Li, X. (2011). Induction of theta-frequency oscillations in the rat medial septal diagonal band slice by metabotropic glutamate receptor agonists. Neuroscience, 177, 1-11. https://doi.org/10.1016/j.neuroscience.2011.01.004

Madsen, H. B., Brown, R. M., Short, J. L., & Lawrence, A. J. (2012). Investigation of the neuroanatomical substrates of reward seeking following protracted abstinence in mice. The Journal of Physiology, 590(10), 2427-2442. https://doi.org/10.1113/jphysiol.2011.225219

Matsumoto, M., & Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115. https://doi.org/10.1038/nature05860

Mendoza, J. (2017). Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacology, Biochemistry, and Behavior, 162, 55-61. https://doi.org/10.1016/j.pbb.2017.06.013

Mitrofanis, J. (2005). Some certainty for the "zone of uncertainty"? Exploring the function of the zona incerta. Neuroscience, 130(1), 1-15. https://doi.org/10.1016/j.neuroscience.2004.08.017

Moncada, A., Cendán, C. M., Baeyens, J. M., & Del Pozo, E. (2003). Effects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice. European Journal of Pharmacology, 465(1-2), 53-60. https://doi.org/10.1016/S0014-2999(03)01461-4

Monti, J. M., & Jantos, H. (2015). The effects of systemic administration and local microinjection into the central nervous system of the selective serotonin 5-HT2C receptor agonist RO-600175 on sleep and wakefulness in the rat. Behavioural Pharmacology, 26(5), 418-426. https://doi.org/10.1097/FBP.0000000000000142

Morón, J. A., Gullapalli, S., Taylor, C., Gupta, A., Gomes, I., & Devi, L. A. (2010). Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: Conditioned place preference to morphine induces CREB phosphorylation. Neuropsychopharmacology, 35(4), 955-966. https://doi.org/10.1038/npp.2009.199

Morris, N. P., Fyffe, R. E., & Robertson, B. (2004). Characterisation of hyperpolarization-activated currents (I[h]) in the medial septum/diagonal band complex in the mouse. Brain Research, 1006(1), 74-86. https://doi.org/10.1016/j.brainres.2004.01.062

Muller, D. L., & Unterwald, E. M. (2004). In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. The Journal of Pharmacology and Experimental Therapeutics, 310(2), 774-782. https://doi.org/10.1124/jpet.104.066548

Naber, D., Pickar, D., Post, R. M., Van Kammen, D. P., Waters, R. N., Ballenger, J. C., … Bunney, W. E., Jr. (1981). Endogenous opioid activity and beta-endorphin immunoreactivity in CSF of psychiatric patients and normal volunteers. The American Journal of Psychiatry, 138(11), 1457-1462. https://doi.org/10.1176/ajp.138.11.1457

Nagayama, H. (1993). Chronopharmacology of psychotropic drugs: Circadian rhythms in drug effects and its implications to rhythms in the brain. Pharmacology & Therapeutics, 59(1), 31-54. https://doi.org/10.1016/0163-7258(93)90040-K

Navratilova, E., Xie, J. Y., Meske, D., Qu, C., Morimura, K., Okun, A., … Porreca, F. (2015). Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. The Journal of Neuroscience, 35(18), 7264-7271. https://doi.org/10.1523/JNEUROSCI.3862-14.2015

Newman-Gage, H., Westrum, L. E., & Bertram, J. F. (1987). Stereological analysis of synaptogenesis in the molecular layer of piriform cortex in the prenatal rat. The Journal of Comparative Neurology, 261(2), 295-305. https://doi.org/10.1002/cne.902610210

Noiman, R., & Korczyn, A. D. (1985). Circadian rhythm of the pupillary response to morphine and to naloxone. Chronobiology International, 2(4), 239-241. https://doi.org/10.3109/07420528509055885

Núñez, C., Laorden, M. L., & Milanés, M. V. (2007). Regulation of serine (Ser)-31 and Ser40 tyrosine hydroxylase phosphorylation during morphine withdrawal in the hypothalamic paraventricular nucleus and nucleus tractus solitarius-A2 cell group: Role of ERK1/2. Endocrinology, 148(12), 5780-5793. https://doi.org/10.1210/en.2007-0510

Núñez, C., Castells, M. T., Laorden, M. L., & Milanés, M. V. (2008). Regulation of extracellular signal-regulated kinases (ERKs) by naloxone-induced morphine withdrawal in the brain stress system. Naunyn-Schmiedeberg's Archives of Pharmacology, 378(4), 407-420. https://doi.org/10.1007/s00210-008-0304-9

Núñez, C., Földes, A., Laorden, M. L., Milanes, M. V., & Kovács, K. J. (2007). Activation of stress-related hypothalamic neuropeptide gene expression during morphine withdrawal. Journal of Neurochemistry, 101(4), 1060-1071. https://doi.org/10.1111/j.1471-4159.2006.04421.x

Núñez, C., Földes, A., Pérez-Flores, D., García-Borrón, J.C, Laorden, M.L., Kovács, K.J., Milanés, M.V. (2009). Elevated glucocorticoid levels are responsible for induction of tyrosine hydroxylase mRNA expression, phosphorylation, and enzyme activity in the nucleus of the solitary tract during morphine withdrawal. Endocrinology, 150(7), 3118-3127. https://doi.org/10.1210/en.2008-1732

Obame, F. N., Plin-Mercier, C., Assaly, R., Zini, R., Dubois-Randé, J. L., Berdeaux, A., & Morin, D. (2008). Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore. The Journal of Pharmacology and Experimental Therapeutics, 326(1), 252-258. https://doi.org/10.1124/jpet.108.138008

Ohara, P. T., Granato, A., Moallem, T. M., Wang, B. R., Tillet, Y., & Jasmin, L. (2003). Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. Journal of Neurocytology, 32, 131-141. https://doi.org/10.1023/B:NEUR.0000005598.09647.7f

Pačesová, D., Volfová, B., Červená, K., Hejnová, L., Novotný, J., & Bendová, Z. (2015). Acute morphine affects the rat circadian clock via rhythms of phosphorylated ERK1/2 and GSK3β kinases and Per1 expression in the rat suprachiasmatic nucleus. British Journal of Pharmacology, 172(14), 3638-3649. https://doi.org/10.1111/bph.13152

Parekh, P. K., & McClung, C. A. (2016). Circadian mechanisms underlying reward-related neurophysiology and synaptic plasticity. Frontiers in Psychiatry, 6, 187. https://doi.org/10.3389/fpsyt.2015.00187

Parkitna, J. R., Obara, I., Wawrzczak-Bargiela, A., Makuch, W., Przewlocka, B., & Przewlocki, R. (2006). Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. The Journal of Pharmacology and Experimental Therapeutics, 319(2), 832-839. https://doi.org/10.1124/jpet.106.107581

Paxinos, G., & Watson, C. (2009). The rat brain in stereotaxic coordinates. London: Academic Press.

Poulin, J. F., Arbour, D., Laforest, S., & Drolet, G. (2009). Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1356-1365. https://doi.org/10.1016/j.pnpbp.2009.06.021

Price, J. L., Russchen, E. T., & Amaral, D. G. (1987). The Amygdaloid complex. In A. Björklund, T. Hökfelt, & L. W. Swanson (Eds.), Handbook of chemical neuroanatomy Integrated systems of the CNS, Part 1 (Vol. 5, pp. 279-388). Amsterdam: Elsevier.

Rao, R., Hao, C. M., Redha, R., Wasserman, D. H., McGuinness, O. P., & Breyer, M. D. (2007). Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia, 50, 452-460. https://doi.org/10.1007/s00125-006-0552-5

Reischl, S., & Kramer, A. (2011). Kinases and phosphatases in the mammalian circadian clock. FEBS Letters, 585(10), 1393-1399. https://doi.org/10.1016/j.febslet.2011.02.038

Rezayof, A., Sardari, M., Zarrindast, M. R., & Nayer-Nouri, T. (2011). Functional interaction between morphine and central amygdala cannabinoid CB1 receptors in the acquisition and expression of conditioned place preference. Behavioural Brain Research, 220, 1-8. https://doi.org/10.1016/j.bbr.2011.01.023

Sah, P., Faber, E.S.L., Lopez de Armentia, M., & Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83(3), 803-834. https://doi.org/10.1152/physrev.00002.2003

Sakhi, K., Wegner, S., Belle, M. D., Howarth, M., Delagrange, P., Brown, T. M., & Piggins, H. D. (2014). Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. The Journal of Physiology, 592(22), 5025-5045. https://doi.org/10.1113/jphysiol.2014.280065

Salas, E., Alonso, E., Polanco, M. J., Cano, M. V., Ruiz-Gayo, M., & Alguacil, L. F. (2013). Differential regulation of CDK5 and c-Fos expression by morphine in the brain of Lewis and Fischer 344 rat strains. Neuroscience, 230, 151-156. https://doi.org/10.1016/j.neuroscience.2012.11.001

Saper, C. B., Lu, J., Chou, T. C., & Gooley, J. (2005). The hypothalamic integrator for circadian rhythms. Trends in Neurosciences, 28(3), 152-157. https://doi.org/10.1016/j.tins.2004.12.009

Semaan, S. J., Dhamija, S., Kim, J., Ku, E. C., & Kauffman, A. S. (2012). Assessment of epigenetic contributions to sexually-dimorphic Kiss1 expression in the anteroventral periventricular nucleus of mice. Endocrinology, 153(4), 1875-1886. https://doi.org/10.1210/en.2011-1975

Simerly, R. B., Swanson, L. W., & Gorski, R. A. (1985). The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: Immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Research, 330(1), 55-64. https://doi.org/10.1016/0006-8993(85)90007-1

Singh, M. E., Verty, A. N., Price, I., McGregor, I. S., & Mallet, P. E. (2004). Modulation of morphine-induced Fos-immunoreactivity by the cannabinoid receptor antagonist SR 141716. Neuropharmacology, 47(8), 1157-1169. https://doi.org/10.1016/j.neuropharm.2004.08.008

Skrabalova, J., Karlovska, I., Hejnova, L., & Novotny, J. (2018). Protective effect of morphine against the oxidant-induced injury in H9c2 cells. Cardiovascular Toxicology, 18(4), 374-385. https://doi.org/10.1007/s12012-018-9448-0

Sudo, M., Minokoshi, Y., & Shimazu, T. (1991). Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. The American Journal of Physiology, 261(3 Pt 1), E298-E303. https://doi.org/10.1152/ajpendo.1991.261.3.E298

Takada, T., Yamashita, A., Date, A., Yanase, M., Suhara, Y., Hamada, A., … Narita, M. (2013). Changes in the circadian rhythm of mRNA expression for μ-opioid receptors in the periaqueductal gray under a neuropathic pain-like state. Synapse, 67(5), 216-223. https://doi.org/10.1002/syn.21633

Takahashi, A., & Shimazu, T. (1982). Hypothalamic regulation of lipid metabolism in the rat: Effect of hypothalamic stimulation on lipogenesis. Journal of the Autonomic Nervous System, 6(2), 225-235. https://doi.org/10.1016/0165-1838(82)90053-4

Tamaddonfard, E., & Hamzeh-Gooshchi, N. (2010). Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytotherapy Research, 24(3), 410-413. https://doi.org/10.1002/ptr.2965

Taracha, E., Lehner, M., Wisłowska-Stanek, A., Zienowicz, M., Maciejak, P., Bidziński, A., … Płaźnik, A. (2006). Effects of methadone and morphine on c-Fos expression in the rat brain: Similarities and differences. Pharmacological Reports, 58(1), 120-124.

Tavakoli-Nezhad, M., & Schwartz, W. J. (2006). Hamsters running on time: Is the lateral habenula a part of the clock? Chronobiology International, 23(1-2), 217-224. https://doi.org/10.1080/07420520500521947

Valjent, E., Pagès, C., Hervé, D., Girault, J. A., & Caboche, J. (2004). Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. The European Journal of Neuroscience, 19(7), 1826-1836. https://doi.org/10.1111/j.1460-9568.2004.03278.x

Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., … Girault, J. A. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 102(2), 491-496. https://doi.org/10.1073/pnas.0408305102

Vathy, I., & Katay, L. (1992). Effects of prenatal morphine on adult sexual behavior and brain catecholamines in rats. Brain Research. Developmental Brain Research, 68(1), 125-131. https://doi.org/10.1016/0165-3806(92)90254-T

Vathy, I., Slamberová, R., Rimanóczy, A., Riley, M. A., & Bar, N. (2003). Autoradiographic evidence that prenatal morphine exposure sex-dependently alters mu-opioid receptor densities in brain regions that are involved in the control of drug abuse and other motivated behaviors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(3), 381-393. https://doi.org/10.1016/S0278-5846(02)00355-X

Vidal, L., Blanchard, J., & Morin, L. P. (2005). Hypothalamic and zona incerta neurons expressing hypocretin, but not melanin concentrating hormone, project to the hamster intergeniculate leaflet. Neuroscience, 134(3), 1081-1090. https://doi.org/10.1016/j.neuroscience.2005.03.062

Vinader-Caerols, C., Collado, P., Segovia, S., & Guillamón, A. (1998). Sex differences in the posteromedial cortical nucleus of the amygdala in the rat. Neuroreport, 9(11), 2653-2656. https://doi.org/10.1097/00001756-199808030-00042

Vujovic, N., Gooley, J. J., Jhou, T. C., & Saper, C. B. (2015). Projections from the subparaventricular zone define four channels of output from the circadian timing system. The Journal of Comparative Neurology, 523(18), 2714-2237. https://doi.org/10.1002/cne.23812

Wardas, J., Ossowska, K., & Wolfarth, S. (1987). The role of gamma-aminobutyric acid mechanisms of the zona incerta-lateral hypothalamus in the catalepsy and muscle rigidity evoked by morphine. Brain Research, 408(1-2), 363-366. https://doi.org/10.1016/0006-8993(88)90569-0

Watson, R. E., Jr., Langub, M. C., Jr., Engle, M. G., & Maley, B. E. (1995). Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Research, 689(2), 254-264. https://doi.org/10.1016/0006-8993(95)00548-5

Webb, I. C., Baltazar, R. M., Wang, X., Pitchers, K. K., Coolen, L. M., & Lehman, M. N. (2009). Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. Journal of Biological Rhythms, 24(6), 465-476. https://doi.org/10.1177%2F0748730409346657

Webb, I. C., Lehman, M. N., & Coolen, L. M. (2015). Diurnal and circadian regulation of reward-related neurophysiology and behavior. Physiology & Behavior, 143, 58-69. https://doi.org/10.1016/j.physbeh.2015.02.034

Weber, M., Lauterburg, T., Tobler, I., & Burgunder, J. M. (2004). Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neuroscience Letters, 358(1), 17-20. https://doi.org/10.1016/j.neulet.2003.12.053

Xie, W. Y., He, Y., Yang, Y. R., Li, Y. F., Kang, K., Xing, B. M., & Wang, Y. (2009). Disruption of Cdk5-associated phosphorylation of residue threonine-161 of the delta-opioid receptor: Impaired receptor function and attenuated morphine antinociceptive tolerance. The Journal of Neuroscience, 29(11), 3551-3564. https://doi.org/10.1523/JNEUROSCI.0415-09.2009

Yoshida, M., Ohdo, S., Takane, H., Tomiyoshi, Y., Matsuo, A., Yukawa, E., & Higuchi, S. (2003). Chronopharmacology of analgesic effect and its tolerance induced by morphine in mice. The Journal of Pharmacology and Experimental Therapeutics, 305(3), 1200-1205. https://doi.org/10.1124/jpet.103.049031

You, Z. D., Li, J. H., Song, C. Y., Lu, C. L., & He, C. (2001). Oxytocin mediates the inhibitory action of acute lithium on the morphine dependence in rats. Neuroscience Research, 41, 143-150. https://doi.org/10.1016/S0168-0102(01)00272-3

Yu, G., Zhang, F. Q., Tang, S. E., Lai, M. J., Su, R. B., & Gong, Z. H. (2014). Continuous infusion versus intermittent bolus dosing of morphine: A comparison of analgesia, tolerance, and subsequent voluntary morphine intake. Journal of Psychiatric Research, 59, 161-166. https://doi.org/10.1016/j.jpsychires.2014.08.009

Zamora-Martinez, E. R., & Edwards, S. (2014). Neuronal extracellular signal-regulated kinase (ERK) activity as marker and mediator of alcohol and opioid dependence. Frontiers in Integrative Neuroscience, 8, 24. https://doi.org/10.3389/fnint.2014.00024

Zhang, J. J., Liu, X. D., & Yu, L. C. (2016). Influences of morphine on the spontaneous and evoked excitatory postsynaptic currents in lateral amygdala of rats. Physiological Research, 65(1), 165-169.

Zhang, X., & van den Pol, A. N. (2017). Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science, 356(6340), 853-859. http://science.sciencemag.org/content/356/6340/853

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...