Dynamic Responsive Formation of Nanostructured Fibers in a Hydrogel Network: A Molecular Dynamics Study

. 2020 ; 8 () : 120. [epub] 20200226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32175309

In an effort to study natural fiber formation, such as, e.g., spider silk, we present a model, which is capable of forming biomimetic fibrillar nanostructure from a hydrogel micellar network. The latter consists of interacting atomic groups which form cores of micelles, and of flexible chains forming the shells of the micelles. Micelles are connected in a compact network by linearly stretched chains. The structural elements of the network can be transformed during deformation from micellar into fibrillary type and their evolution is found to depend significantly on strain rate. Our model suggests a set of conditions suitable for the formation of nanostructured fibrillar network. It demonstrates that a fibrillar structure is only formed upon sufficiently fast stretching while, in contrast, the micellar gel structure is preserved, if the material is pulled slowly. We illustrate this key aspect by a minimalistic model of only four chains as part of the whole network, which provides a detailed view on the mechanism of fibril formation. We conclude that such a simplified structure has similar functionality and is probably responsible for the formation of nano-structured molecular fibrils in natural materials.

Zobrazit více v PubMed

Andersson M., Jia Q., Abella A., Lee X.-Y., Landreh M., Purhonen P., et al. . (2017). Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264. 10.1038/nchembio.2269 PubMed DOI

Benetatos P., Jho Y. (2016). Bundling in semiflexible polymers. Adv. Colloid Interface Sci. 232, 114–126. 10.1016/j.cis.2016.01.001 PubMed DOI

Buehler M. J. (2006). Nature designs tough collagen. Proc. Nat. Acad. Sci. U.S.A. 133, 12285–12290. 10.1073/pnas.0603216103 PubMed DOI PMC

Gray G., van der Vaart A., Guo C., Jones J., Onofrei D., Cherry B., et al. . (2016). Secondary structure adopted by the gly-gly-x repetitive regions of dragline spider silk. Int. J. Mol. Sci. 17:2023. 10.3390/ijms17122023 PubMed DOI PMC

Grubb D. T., Jelinski L. W. (1997). Fiber morphology of spider silk. Macromolecules 30, 2860–2867. 10.1021/ma961293c DOI

Hammond N. A., Kamm R. D. (2008). Elastic deformation and failure in protein filament bundles. Biomaterials 29, 3152–3160. 10.1016/j.biomaterials.2008.04.013 PubMed DOI PMC

Jin H.-J., Kaplan D. L. (2003). Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061. 10.1038/nature01809 PubMed DOI

Lee S., Rutledge G. C. (2011). Plastic deformation of semicrystalline polyethylene by molecular simulation. Macromolecules 44, 3096–3108. 10.1021/ma1026115 DOI

Lele A. K., Joshi Y. M., Mashelkar R. (2001). Deformation induced hydrophobicity. Chem. Eng. Sci. 56, 5793–5800. 10.1016/S0009-2509(01)00288-3 DOI

Liu X., Zhang K.-Q. (2014). Silk fiber–molecular formation mechanism, structure-property relationship and advanced applications, in Oligomerization of Chemical and Biological Compounds, ed Lesseur C. (London: InTechOpen; ).

Michlovska L., Vojtova L., Humpa O., Kucerik J., Zidek J., Jancar J. (2016). Hydrolytic stability of end-linked hydrogels from plga-peg-plga macromonomers terminated by -itaconyl groups. RSC Adv. 6, 16808–16816. 10.1039/C5RA26222D DOI

Miyazaki T., Hoshiko A., Akasaka M., Shintani T., Sakurai S. (2006). Saxs studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water. Macromolecules 39, 2921–2929. 10.1021/ma052595u DOI

Mondal A., Borah R., Mukherjee A., Basu S., Jassal M., Agrawal A. K. (2008). Electrospun self-assembled nanofiber yarns. J. Appl. Polym. Sci. 110, 603–607. 10.1002/app.28673 DOI

Nilebäck L., Arola S., Kvick M., Paananen A., Linder M. B., Hedhammar M. (2018). Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism. Langmuir 34, 11795–11805. 10.1021/acs.langmuir.8b02381 PubMed DOI

Peleg O., Savin T., Kolmakov G. V., Salib I. G., Balazs A. C., Kröger M., et al. . (2012). Fibers with integrated mechanochemical switches. Biophys. J. 103, 1909–1918. 10.1016/j.bpj.2012.09.028 PubMed DOI PMC

Peng C. A., Russo J., Lyda T. A., Marcotte W. R. (2017). Polyelectrolyte fiber assembly of plant-derived spider silk-like proteins. Biomacromolecules 18, 740–746. 10.1021/acs.biomac.6b01552 PubMed DOI

Peng N., Lv R., Jin T., Na B., Liu H., Zhou H. (2017). Thermal and strain-induced phase separation in an ionic liquid plasticized polylactide. Polymer 108, 442–448. 10.1016/j.polymer.2016.12.024 DOI

Perry D. J., Bittencourt D., Siltberg-Liberles J., Rech E. L., Lewis R. V. (2010). Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11, 3000–3006. 10.1021/bm1007585 PubMed DOI PMC

Srivastava R. (2017). Electrospinning of patterned and 3D nanofibers. Electrospun Nanofibers 1:399 10.1016/B978-0-08-100907-9.00016-7 DOI

Stoclet G. (2016). Strain-induced structural evolution of poly(l-lactide) and poly(d-lactide) blends. Polymer 99, 231–239. 10.1016/j.polymer.2016.07.019 DOI

Svachova V., Vojtova L., Pavlinak D., Vojtek L., Sedlaková V., Hyrsl P., et al. . (2016). Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater. Sci. Eng. C 67, 493–501. 10.1016/j.msec.2016.05.059 PubMed DOI

Walker A. A., Holland C., Sutherland T. D. (2015). More than one way to spin a crystallite. Proc. Biol. Sci. R. Soc. 282:20150259. 10.1098/rspb.2015.0259 PubMed DOI PMC

Wang C., Hashimoto T. (2018). Self-organization in electrospun polymer solutions. Macromolecules 51, 4502–4515. 10.1021/acs.macromol.8b00647 DOI

Wang X., Kim H. J., Wong C., Vepari C., Matsumoto A., Kaplan D. L. (2006). Fibrous proteins and tissue engineering. Mater. Today 9, 44–53. 10.1016/S1369-7021(06)71742-4 DOI

Warner M., Terentjev E. (1996). Nematic elastomers–a new state of matter? Prog. Polym. Sci. 21, 853–891. 10.1016/S0079-6700(96)00013-5 DOI

Yamamoto T. (2013). Molecular dynamics in fiber formation of polyethylene and large deformation of the fiber. Polymer 54, 3086–3097. 10.1016/j.polymer.2013.04.029 DOI

Zhong C., Chrzanowska-Wodnicka M., Brown J., Shaub A., Belkin A. M., Burridge K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141, 539–551. 10.1083/jcb.141.2.539 PubMed DOI PMC

Zidek J., Kulovana E., Jancar J. (2017a). The effect of network solvation on the viscoelastic response of polymer hydrogels. Polymers 9:379. 10.3390/polym9080379 PubMed DOI PMC

Zidek J., Milchev A., Jancar J., Vilgis T. A. (2016). Deformation-induced damage and recovery in model hydrogels–a molecular dynamics simulation. J. Mech. Phys. Solids 94, 372–387. 10.1016/j.jmps.2016.05.013 DOI

Zidek J., Milchev A., Jancar J., Vilgis T. A. (2017b). Dynamic mechanical response of hybrid physical covalent networks–molecular dynamics simulation. Macromol. Symp. 373:1600147 10.1002/masy.201600147 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...