The Effect of Network Solvation on the Viscoelastic Response of Polymer Hydrogels
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
205/15/18495S
Czech Grant Agency
PubMed
30971054
PubMed Central
PMC6418510
DOI
10.3390/polym9080379
PII: polym9080379
Knihovny.cz E-zdroje
- Klíčová slova
- deformation, hydrogel, molecular dynamics, solvation, water,
- Publikační typ
- časopisecké články MeSH
The majority of investigations consider the deformation response of hydrogels, fully controlled by the deformation behavior of their polymer network, neglecting the contribution caused by the presence of water. Here, we use molecular dynamics simulation in an attempt to include the effect of physically bound water via polymer chain solvation on the viscoelastic response of hydrogels. Our model allows us to control the solvation of chains as an independent variable. The solvation of the chain is independent of other factors, mainly the effect (pH) which interferes significantly in experiments. The solvation of hydrophilic chains was controlled by setting a partial charge on the chains and quantified by the Bjerrum length (BL). The BL was calculated from the partial electric charge of the solvent and macromolecular network. When the BL is short, the repulsive Van der Waals interactions are predominant in the vicinity of macromolecules and solvation is not observed. For a long BL, the water molecules in the solvation zone of network are in the same range as attractive intermolecular forces and the solvation occurs. The model also allows the consideration of molecules of water attached to two chains simultaneously, forming a temporary bridging. By elucidating the relations between solvation of the network and structural changes during the network deformation, one may predict the viscoelastic properties of hydrogels knowing the molecular structure of its polymer chains.
Zobrazit více v PubMed
Park C.W., Kim S.C. Sol-gel transition behavior of amphiphilic comb-like poly[(PEG-b-PLGA)acrylate] block copolymers. J. Polym. Sci. Pol. Chem. 2010;48:1287–1297. doi: 10.1002/pola.23877. DOI
Michlovska L., Vojtova L., Humpa O., Kucerik J., Zidek J., Jancar J. Hydrolytic stability of end-linked hydrogels from PLGA–PEG–PLGA macromonomers terminated by α,ω-itaconyl groups. RSC Adv. 2016;6:2046–2069. doi: 10.1039/C5RA26222D. DOI
Tian J., Seery T.A.P., Weiss R.A. Physically cross-linked alkylacrylamide hydrogels, phase behavior and microstructure. Macromolecules. 2004;37:9994–10000. doi: 10.1021/ma049475r. DOI
Pasqui D., De Cagna M., Barbucci R. Polysaccharide-based hydrogels the key role of water in affecting mechanical properties. Polymers. 2012;4:1517–1534. doi: 10.3390/polym4031517. DOI
Prusova A., Conte P., Kucerik J., Alonzo G. Dynamics of hyaluronan aqueous solutions as assessed by fast field cycling NMR relaxometry. Anal. Bioanal. Chem. 2010;397:3023–3028. doi: 10.1007/s00216-010-3855-9. PubMed DOI
Kwon H.J., Osada Y., Gong J.P. Polyelectrolyte Gels-Fundamentals and Applications. Polym. J. 2006;38:1211–1219. doi: 10.1295/polymj.PJ2006125. DOI
Zhao X., Huebsch N., Mooney D.J., Suo Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 2010;107:063509. doi: 10.1063/1.3343265. PubMed DOI PMC
Krok M., Pamula E. Poly(l-lactide-co-glycolide) microporous membranes for medical applications produced with the use of polyethylene glycol as a pore former. J. Appl. Polym. Sci. 2012;125:E187–E199. doi: 10.1002/app.36697. DOI
Fang J., Mehlich A., Koga N., Huang J., Koga R., Gao X., Hu C., Jin C., Rief M., Kast J., et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat. Commun. 2013;4:2974. doi: 10.1038/ncomms3974. PubMed DOI PMC
Cafferty B.J., Gallego I., Chen M.C., Farley K.I., Eritja R., Hud N.V. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. J. Am. Chem. Soc. 2013;135:2447–2450. doi: 10.1021/ja312155v. PubMed DOI
Schiessel H. Counterion condensation on flexible polyelectrolytes, dependence on ionic strength and chain concentration. Macromolecules. 1999;32:5673–5680. doi: 10.1021/ma990051k. DOI
Manning G.S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 1969;51:934–938. doi: 10.1063/1.1672158. DOI
Dobrynin A.V., Colby R.H., Rubinstein M. Scaling Theory of Polyelectrolyte Solutions. Macromolecules. 1995;28:1859–1871. doi: 10.1021/ma00110a021. DOI
Dobrynin A.V. Theory and simulations of charged polymers, from solution properties to polymeric nanomaterials. Curr. Opin. Coll. Interface Sci. 2008;13:376–388. doi: 10.1016/j.cocis.2008.03.006. DOI
Smiatek J., Sega M., Holm C., Schiller U.D., Schmid F. Mesoscopic simulations of the counterion-induced electro-osmotic flow, a comparative study. J. Chem. Phys. 2009;130:244702. doi: 10.1063/1.3152844. PubMed DOI
Narayanan Krishnamoorthy A., Holm C., Smiatek J. Local Water Dynamics around Antifreeze Protein Residues in the Presence of Osmolytes, the Importance of Hydroxyl and Disaccharide Groups. J. Phys. Chem. B. 2014;118:11613–11621. doi: 10.1021/jp507062r. PubMed DOI
Miyamoto S., Kollman P.A. Molecular dynamics studies of calixspherand complexes with alkali metal cations, calculation of the absolute and relative free energies of binding of cations to a calixspherand. J. Am. Chem. Soc. 1992;114:3668–3674. doi: 10.1021/ja00036a015. DOI
Lee S.G., Brunello G.F., Jang S.S., Lee J.H., Bucknall D.G. Effect of monomeric sequence on mechanical properties of P(VP-co-HEMA) hydrogels at low hydration. J. Phys. Chem. B. 2009;113:6604–6612. doi: 10.1021/jp8058867. PubMed DOI
Song S.I., Kim B.C. Characteristic rheological features of PVA solutions in water-containing solvents with different hydration states. Polymer. 2004;45:2381–2386. doi: 10.1016/j.polymer.2004.01.057. DOI
Sun J.Y., Zhao X., Illeperuma W.R.K., Chaudhuri O., Oh K.H., Mooney D.J., Vlassak J.J., Suo Z. Highly stretchable and tough hydrogels. Nature. 2012;489:133–136. doi: 10.1038/nature11409. PubMed DOI PMC
Yang C.H., Wang M.X., Haider H., Yang J.H., Sun J.Y., Chen Y.M., Zhou J., Suo Z. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. 2013;5:10418–10422. doi: 10.1021/am403966x. PubMed DOI
Kleber M., Johnson M.G. Advances in Understanding the Molecular Structure of Soil Organic Matter: Implications for Interactions in the Environment. In: Sparks D.L., editor. Advances in Agronomy. Volume 106. Elsevier Academic Press; San Diego, CA, USA: 2010. pp. 77–142.
Schulten H.R., Violante A.H. Developments in Soil Science. Volume 28. Elsevier Academic Press; Amsterdam, The Netherlands: 2002. Soil Mineral-Organic Matter-Microorganism Interactions and Ecosystem Health: Dynamics, Mobility, and Transformation of Pollutants and Nutrients; pp. A351–A381.
Zidek J., Milchev A., Jancar J., Vilgis T.A. Deformation-induced damage and recovery in model hydrogels, a molecular dynamics simulation. J. Mech. Phys. Solids. 2016;94:372–387. doi: 10.1016/j.jmps.2016.05.013. DOI
Zidek J., Milchev A., Vilgis T.A. Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network. J. Chem. Phys. 2012;137:244908. doi: 10.1063/1.4769833. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD, Visual molecular dynamics. J. Mol. Graphi. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Abraham M., Hess B., van der Spoel D., Lindahl E. GROMACS User Manual, Version 5.0.7. Volume 28. Royal Institute of Technology, Uppsala University; Uppsala, Sweden: 2015. p. 240.
Itoh H., Sakuma H. Dielectric constant of water as a function of separation in a slab geometry: A molecular dynamics study. J. Chem. Phys. 2015;142:184703. doi: 10.1063/1.4919698. PubMed DOI
Aquino A.J.A., Tunega D., Pasalic H., Schaumann G.E., Haberhauer G., Gerzabek M.H., Lischka H. Study of solvent effect on the stability of water bridge-linked carboxyl groups in humic acid models. Geoderma. 2011;169:20–26. doi: 10.1016/j.geoderma.2010.12.006. DOI
Ondruch P., Kucerik J., Steinmetz Z., Schaumann G.E. Influence of Organic Chemicals on Water Molecule Bridges in Soil Organic Matter of a Sapric Histosol. J. Phys. Chem. A. 2017;121:2367–2376. doi: 10.1021/acs.jpca.6b10207. PubMed DOI
Leterrier Y., Thivolle J., Oliveira F., Manson J.A., Gubler L., Ben Youcef H., Bonorand L., Scherer G. Viscoelastic phase diagram of fluorinated and grafted polymer films and proton-exchange membranes for fuel cell applications. J. Polym. Sci. Polym. Phys. 2013;51:1139–1148. doi: 10.1002/polb.23309. DOI
Scionti G., Moral M., Toledano M., Osorio R., Duran J.D.G., Alaminos M., Campos A., Lopez-Lopez M.T. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model. J. Biomed. Mater. Res. A. 2014;102:2573–2582. doi: 10.1002/jbm.a.34929. PubMed DOI
Bajpai A.K., Shukla S.K., Bhanu S., Kankane S. Responsive polymers in controlled drug delivery. Progress Polym. Sci. 2008;33:1088–1118. doi: 10.1016/j.progpolymsci.2008.07.005. DOI
Wilson A., Blenner M., Guiseppi-Elie A. Polyplex formation influences release mechanism of Mono- and Di-Valent Ions from Phosphorylcholine group bearing hydrogels. Polymers. 2013;6:2073–4360. doi: 10.3390/polym6092451. DOI
Mulliken R.S. Electronic Population Analysis on LCAO[Single Bond]MO Molecular Wave Functions. I. J. Chem. Phys. 1955;23:1833. doi: 10.1063/1.1740588. DOI
Safronov A.P., Smirnova Y.A., Pollack G.H., Blyakhman F.A. Enthalpy of swelling of potassium polyacrylate and polymethacrylate hydrogels. Evaluation of excluded-volume interaction. Macromol. Chem. Phys. 2004;205:1431–1438. doi: 10.1002/macp.200400067. DOI
Dole M., Mclaren A.D. The free energy, heat and entropy of sorption of water vapor by proteins and high polymers. J. Am. Chem. Soc. 1947;69:651–657. doi: 10.1021/ja01195a054. PubMed DOI