Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32180400
PubMed Central
PMC7997625
DOI
10.1021/acs.chemrestox.9b00506
Knihovny.cz E-zdroje
- MeSH
- arsen chemie izolace a purifikace MeSH
- chelátory chemie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina dimerkaptojantarová chemie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- simulace molekulární dynamiky MeSH
- tělesné tekutiny chemie MeSH
- termodynamika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsen MeSH
- chelátory MeSH
- kyselina dimerkaptojantarová MeSH
- ligandy MeSH
Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.
CNR IPCF Viale Ferdinando Stagno d'Alcontres 37 98158 Messina Italy
Institute of Biophysics of the Czech Academy of Sciences Kràlovopolskà 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Cassone G.; Chillè D.; Foti C.; Giuffrè O.; Ponterio R. C.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 23272–23280. 10.1039/C8CP04320E. PubMed DOI
Chillè D.; Foti C.; Giuffrè O. (2018) Chemosphere 190, 72–79. 10.1016/j.chemosphere.2017.09.115. PubMed DOI
WHO Water, Sanitation and Health Team (2004) Guidelines for Drinking-Water Quality: Vol.1, Recommendations, 3rd ed., World Health Organization, Geneva.
Aaseth J.; Skaug M. A.; Cao Y.; Andersen O. (2015) J. Trace Elem. Med. Biol. 31, 260–266. 10.1016/j.jtemb.2014.10.001. PubMed DOI
Andersen O. (1999) Chem. Rev. 99, 2683–2710. 10.1021/cr980453a. PubMed DOI
Aaseth J., Crisponi G., and Andersen O., Eds. (2016) Chelation Therapy in the Treatment of Metal Intoxication, Elsevier.
Flora S. J.; Pachauri V. (2010) Int. J. Environ. Res. Public Health 7, 2745–2788. 10.3390/ijerph7072745. PubMed DOI PMC
Crisponi G., and Nurchi V. M. (2016) in Chelation Therapy in the Treatment of Metal Intoxication (Aaseth J., Crisponi G., and Andersen O., Eds.), Elsevier, pp 35–61.
Bjørklund G.; Mutter J.; Aaseth J. (2017) Arch. Toxicol. 91, 3787–3797. 10.1007/s00204-017-2100-0. PubMed DOI
Aposhian H. V.; Morgan D. L.; Queen H. L.; Maiorino R. M.; Aposhian M. M. (2003) J. Toxicol., Clin. Toxicol. 41, 339–347. 10.1081/CLT-120022000. PubMed DOI
Sears M. E. (2013) Sci. World J. 2013, 219840.10.1155/2013/219840. PubMed DOI PMC
Bradberry S.; Vale A. (2009) Clin. Toxicol. 47, 617–631. 10.1080/15563650903174828. PubMed DOI
Cassone G.; Chillè D.; Giacobello F.; Giuffrè O.; Mollica Nardo V.; Ponterio R. C.; Saija F.; Sponer J.; Trusso S.; Foti C. (2019) J. Phys. Chem. B 123, 6090–6098. 10.1021/acs.jpcb.9b04901. PubMed DOI
De Stefano C., Sammartano S., Mineo P., and Rigano C. (1997) in Marine Chemistry - An Environmental Analytical Chemistry Approach (Gianguzza A., Pelizzetti E., and Sammartano S., Eds.), Kluwer Academic Publishers, Amsterdam, pp 71–83.
Gans P.; Sabatini A.; Vacca A. (1999) Ann. Chim. (Rome) 89, 45–49.
Galli G., and Pasquarello A. (1993) in A Computer Simulation in Chemical Physics (Allen M. P., and Tildesley D. J., Eds.), Springer, Netherlands, pp 261–363.
Hutter J.; Iannuzzi M.; Schiffmann F.; Vandevondele J. (2014) Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 15–25. 10.1002/wcms.1159. DOI
Becke A. D. (1988) Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.; Yang W.; Parr R. G. (1988) Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. (2010) J. Chem. Phys. 132, 154104–154123. 10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. (2011) J. Comput. Chem. 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Goedecker S.; Teter M.; Hutter J. (1996) Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Bussi G.; Donadio D.; Parrinello M. (2007) J. Chem. Phys. 126, 014101–014108. 10.1063/1.2408420. PubMed DOI
Cassone G.; Calogero G.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 13038–13046. 10.1039/C8CP01155A. PubMed DOI
Cassone G.; Kruse H.; Sponer J. (2019) Phys. Chem. Chem. Phys. 21, 8121–8132. 10.1039/C8CP07492E. PubMed DOI
Cassone G.; Sponer J.; Saija F.; Di Mauro E.; Saitta A. M.; Sponer E. (2017) Phys. Chem. Chem. Phys. 19, 1817–1825. 10.1039/C6CP07993H. PubMed DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. (2014) J. Phys. Chem. B 118, 4419–4424. 10.1021/jp5021356. PubMed DOI
Filella M.; May P. M. (2005) Talanta 65, 1221–1225. 10.1016/j.talanta.2004.08.046. PubMed DOI
Vacca A.; Sabatini A.; Gristina M. A. (1972) Coord. Chem. Rev. 8, 45–53. 10.1016/S0010-8545(00)80050-8. DOI
Delnomdedieu M.; Basti M. M.; Otvos J. D.; Thomas D. J. (1993) Chem. Res. Toxicol. 6, 598–602. 10.1021/tx00035a002. PubMed DOI
Crea F.; De Stefano C.; Foti C.; Milea D.; Sammartano S. (2014) Curr. Med. Chem. 21, 3819–3836. 10.2174/0929867321666140601160740. PubMed DOI
Gianguzza A.; Giuffrè O.; Piazzese D.; Sammartano S. (2012) Coord. Chem. Rev. 256, 222–239. 10.1016/j.ccr.2011.06.027. DOI
Chillè D.; Foti C.; Giuffrè O. (2018) J. Chem. Thermodyn. 121, 65–71. 10.1016/j.jct.2018.02.009. DOI
Cardiano P.; Foti C.; Giuffrè O. (2017) J. Mol. Liq. 240, 128–137. 10.1016/j.molliq.2017.05.067. DOI
Cardiano P.; De Stefano C.; Foti C.; Giacobello F.; Giuffrè O.; Sammartano S. (2018) J. Mol. Liq. 261, 96–106. 10.1016/j.molliq.2018.04.003. DOI
Cardiano P.; Falcone G.; Foti C.; Giuffrè O.; Sammartano S. (2011) New J. Chem. 35, 800–806. 10.1039/c0nj00768d. DOI
Crea F.; Falcone G.; Foti C.; Giuffrè O.; Materazzi S. (2014) New J. Chem. 38, 3973–3983. 10.1039/C4NJ00830H. DOI
De Stefano C.; Foti C.; Giuffrè O.; Milea D. (2016) New J. Chem. 40, 1443–1453. 10.1039/C5NJ02531A. DOI
Cardiano P.; Chillè D.; Foti C.; Giuffrè O. (2018) Fluid Phase Equilib. 458, 9–15. 10.1016/j.fluid.2017.11.002. DOI
Cardiano P.; Chillè D.; Cordaro M.; Foti C.; Giuffrè O. (2019) J. Chem. Eng. Data 64, 2859–2866. 10.1021/acs.jced.9b00231. DOI