Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands

. 2020 Apr 20 ; 33 (4) : 967-974. [epub] 20200324

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32180400

Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.

Zobrazit více v PubMed

Cassone G.; Chillè D.; Foti C.; Giuffrè O.; Ponterio R. C.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 23272–23280. 10.1039/C8CP04320E. PubMed DOI

Chillè D.; Foti C.; Giuffrè O. (2018) Chemosphere 190, 72–79. 10.1016/j.chemosphere.2017.09.115. PubMed DOI

WHO Water, Sanitation and Health Team (2004) Guidelines for Drinking-Water Quality: Vol.1, Recommendations, 3rd ed., World Health Organization, Geneva.

Aaseth J.; Skaug M. A.; Cao Y.; Andersen O. (2015) J. Trace Elem. Med. Biol. 31, 260–266. 10.1016/j.jtemb.2014.10.001. PubMed DOI

Andersen O. (1999) Chem. Rev. 99, 2683–2710. 10.1021/cr980453a. PubMed DOI

Aaseth J., Crisponi G., and Andersen O., Eds. (2016) Chelation Therapy in the Treatment of Metal Intoxication, Elsevier.

Flora S. J.; Pachauri V. (2010) Int. J. Environ. Res. Public Health 7, 2745–2788. 10.3390/ijerph7072745. PubMed DOI PMC

Crisponi G., and Nurchi V. M. (2016) in Chelation Therapy in the Treatment of Metal Intoxication (Aaseth J., Crisponi G., and Andersen O., Eds.), Elsevier, pp 35–61.

Bjørklund G.; Mutter J.; Aaseth J. (2017) Arch. Toxicol. 91, 3787–3797. 10.1007/s00204-017-2100-0. PubMed DOI

Aposhian H. V.; Morgan D. L.; Queen H. L.; Maiorino R. M.; Aposhian M. M. (2003) J. Toxicol., Clin. Toxicol. 41, 339–347. 10.1081/CLT-120022000. PubMed DOI

Sears M. E. (2013) Sci. World J. 2013, 219840.10.1155/2013/219840. PubMed DOI PMC

Bradberry S.; Vale A. (2009) Clin. Toxicol. 47, 617–631. 10.1080/15563650903174828. PubMed DOI

Cassone G.; Chillè D.; Giacobello F.; Giuffrè O.; Mollica Nardo V.; Ponterio R. C.; Saija F.; Sponer J.; Trusso S.; Foti C. (2019) J. Phys. Chem. B 123, 6090–6098. 10.1021/acs.jpcb.9b04901. PubMed DOI

De Stefano C., Sammartano S., Mineo P., and Rigano C. (1997) in Marine Chemistry - An Environmental Analytical Chemistry Approach (Gianguzza A., Pelizzetti E., and Sammartano S., Eds.), Kluwer Academic Publishers, Amsterdam, pp 71–83.

Gans P.; Sabatini A.; Vacca A. (1999) Ann. Chim. (Rome) 89, 45–49.

Galli G., and Pasquarello A. (1993) in A Computer Simulation in Chemical Physics (Allen M. P., and Tildesley D. J., Eds.), Springer, Netherlands, pp 261–363.

Hutter J.; Iannuzzi M.; Schiffmann F.; Vandevondele J. (2014) Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 15–25. 10.1002/wcms.1159. DOI

Becke A. D. (1988) Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. (1988) Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. (2010) J. Chem. Phys. 132, 154104–154123. 10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. (2011) J. Comput. Chem. 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Goedecker S.; Teter M.; Hutter J. (1996) Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI

Bussi G.; Donadio D.; Parrinello M. (2007) J. Chem. Phys. 126, 014101–014108. 10.1063/1.2408420. PubMed DOI

Cassone G.; Calogero G.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 13038–13046. 10.1039/C8CP01155A. PubMed DOI

Cassone G.; Kruse H.; Sponer J. (2019) Phys. Chem. Chem. Phys. 21, 8121–8132. 10.1039/C8CP07492E. PubMed DOI

Cassone G.; Sponer J.; Saija F.; Di Mauro E.; Saitta A. M.; Sponer E. (2017) Phys. Chem. Chem. Phys. 19, 1817–1825. 10.1039/C6CP07993H. PubMed DOI

Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. (2014) J. Phys. Chem. B 118, 4419–4424. 10.1021/jp5021356. PubMed DOI

Filella M.; May P. M. (2005) Talanta 65, 1221–1225. 10.1016/j.talanta.2004.08.046. PubMed DOI

Vacca A.; Sabatini A.; Gristina M. A. (1972) Coord. Chem. Rev. 8, 45–53. 10.1016/S0010-8545(00)80050-8. DOI

Delnomdedieu M.; Basti M. M.; Otvos J. D.; Thomas D. J. (1993) Chem. Res. Toxicol. 6, 598–602. 10.1021/tx00035a002. PubMed DOI

Crea F.; De Stefano C.; Foti C.; Milea D.; Sammartano S. (2014) Curr. Med. Chem. 21, 3819–3836. 10.2174/0929867321666140601160740. PubMed DOI

Gianguzza A.; Giuffrè O.; Piazzese D.; Sammartano S. (2012) Coord. Chem. Rev. 256, 222–239. 10.1016/j.ccr.2011.06.027. DOI

Chillè D.; Foti C.; Giuffrè O. (2018) J. Chem. Thermodyn. 121, 65–71. 10.1016/j.jct.2018.02.009. DOI

Cardiano P.; Foti C.; Giuffrè O. (2017) J. Mol. Liq. 240, 128–137. 10.1016/j.molliq.2017.05.067. DOI

Cardiano P.; De Stefano C.; Foti C.; Giacobello F.; Giuffrè O.; Sammartano S. (2018) J. Mol. Liq. 261, 96–106. 10.1016/j.molliq.2018.04.003. DOI

Cardiano P.; Falcone G.; Foti C.; Giuffrè O.; Sammartano S. (2011) New J. Chem. 35, 800–806. 10.1039/c0nj00768d. DOI

Crea F.; Falcone G.; Foti C.; Giuffrè O.; Materazzi S. (2014) New J. Chem. 38, 3973–3983. 10.1039/C4NJ00830H. DOI

De Stefano C.; Foti C.; Giuffrè O.; Milea D. (2016) New J. Chem. 40, 1443–1453. 10.1039/C5NJ02531A. DOI

Cardiano P.; Chillè D.; Foti C.; Giuffrè O. (2018) Fluid Phase Equilib. 458, 9–15. 10.1016/j.fluid.2017.11.002. DOI

Cardiano P.; Chillè D.; Cordaro M.; Foti C.; Giuffrè O. (2019) J. Chem. Eng. Data 64, 2859–2866. 10.1021/acs.jced.9b00231. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace