Removal of As(III) from Biological Fluids: Mono- versus Dithiolic Ligands
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32180400
PubMed Central
PMC7997625
DOI
10.1021/acs.chemrestox.9b00506
Knihovny.cz E-resources
- MeSH
- Arsenic chemistry isolation & purification MeSH
- Chelating Agents chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Succimer chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Structure MeSH
- Molecular Dynamics Simulation MeSH
- Body Fluids chemistry MeSH
- Thermodynamics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arsenic MeSH
- Chelating Agents MeSH
- Succimer MeSH
- Ligands MeSH
Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.
CNR IPCF Viale Ferdinando Stagno d'Alcontres 37 98158 Messina Italy
Institute of Biophysics of the Czech Academy of Sciences Kràlovopolskà 135 61265 Brno Czech Republic
See more in PubMed
Cassone G.; Chillè D.; Foti C.; Giuffrè O.; Ponterio R. C.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 23272–23280. 10.1039/C8CP04320E. PubMed DOI
Chillè D.; Foti C.; Giuffrè O. (2018) Chemosphere 190, 72–79. 10.1016/j.chemosphere.2017.09.115. PubMed DOI
WHO Water, Sanitation and Health Team (2004) Guidelines for Drinking-Water Quality: Vol.1, Recommendations, 3rd ed., World Health Organization, Geneva.
Aaseth J.; Skaug M. A.; Cao Y.; Andersen O. (2015) J. Trace Elem. Med. Biol. 31, 260–266. 10.1016/j.jtemb.2014.10.001. PubMed DOI
Andersen O. (1999) Chem. Rev. 99, 2683–2710. 10.1021/cr980453a. PubMed DOI
Aaseth J., Crisponi G., and Andersen O., Eds. (2016) Chelation Therapy in the Treatment of Metal Intoxication, Elsevier.
Flora S. J.; Pachauri V. (2010) Int. J. Environ. Res. Public Health 7, 2745–2788. 10.3390/ijerph7072745. PubMed DOI PMC
Crisponi G., and Nurchi V. M. (2016) in Chelation Therapy in the Treatment of Metal Intoxication (Aaseth J., Crisponi G., and Andersen O., Eds.), Elsevier, pp 35–61.
Bjørklund G.; Mutter J.; Aaseth J. (2017) Arch. Toxicol. 91, 3787–3797. 10.1007/s00204-017-2100-0. PubMed DOI
Aposhian H. V.; Morgan D. L.; Queen H. L.; Maiorino R. M.; Aposhian M. M. (2003) J. Toxicol., Clin. Toxicol. 41, 339–347. 10.1081/CLT-120022000. PubMed DOI
Sears M. E. (2013) Sci. World J. 2013, 219840.10.1155/2013/219840. PubMed DOI PMC
Bradberry S.; Vale A. (2009) Clin. Toxicol. 47, 617–631. 10.1080/15563650903174828. PubMed DOI
Cassone G.; Chillè D.; Giacobello F.; Giuffrè O.; Mollica Nardo V.; Ponterio R. C.; Saija F.; Sponer J.; Trusso S.; Foti C. (2019) J. Phys. Chem. B 123, 6090–6098. 10.1021/acs.jpcb.9b04901. PubMed DOI
De Stefano C., Sammartano S., Mineo P., and Rigano C. (1997) in Marine Chemistry - An Environmental Analytical Chemistry Approach (Gianguzza A., Pelizzetti E., and Sammartano S., Eds.), Kluwer Academic Publishers, Amsterdam, pp 71–83.
Gans P.; Sabatini A.; Vacca A. (1999) Ann. Chim. (Rome) 89, 45–49.
Galli G., and Pasquarello A. (1993) in A Computer Simulation in Chemical Physics (Allen M. P., and Tildesley D. J., Eds.), Springer, Netherlands, pp 261–363.
Hutter J.; Iannuzzi M.; Schiffmann F.; Vandevondele J. (2014) Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 15–25. 10.1002/wcms.1159. DOI
Becke A. D. (1988) Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.; Yang W.; Parr R. G. (1988) Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. (2010) J. Chem. Phys. 132, 154104–154123. 10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. (2011) J. Comput. Chem. 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Goedecker S.; Teter M.; Hutter J. (1996) Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Bussi G.; Donadio D.; Parrinello M. (2007) J. Chem. Phys. 126, 014101–014108. 10.1063/1.2408420. PubMed DOI
Cassone G.; Calogero G.; Sponer J.; Saija F. (2018) Phys. Chem. Chem. Phys. 20, 13038–13046. 10.1039/C8CP01155A. PubMed DOI
Cassone G.; Kruse H.; Sponer J. (2019) Phys. Chem. Chem. Phys. 21, 8121–8132. 10.1039/C8CP07492E. PubMed DOI
Cassone G.; Sponer J.; Saija F.; Di Mauro E.; Saitta A. M.; Sponer E. (2017) Phys. Chem. Chem. Phys. 19, 1817–1825. 10.1039/C6CP07993H. PubMed DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. (2014) J. Phys. Chem. B 118, 4419–4424. 10.1021/jp5021356. PubMed DOI
Filella M.; May P. M. (2005) Talanta 65, 1221–1225. 10.1016/j.talanta.2004.08.046. PubMed DOI
Vacca A.; Sabatini A.; Gristina M. A. (1972) Coord. Chem. Rev. 8, 45–53. 10.1016/S0010-8545(00)80050-8. DOI
Delnomdedieu M.; Basti M. M.; Otvos J. D.; Thomas D. J. (1993) Chem. Res. Toxicol. 6, 598–602. 10.1021/tx00035a002. PubMed DOI
Crea F.; De Stefano C.; Foti C.; Milea D.; Sammartano S. (2014) Curr. Med. Chem. 21, 3819–3836. 10.2174/0929867321666140601160740. PubMed DOI
Gianguzza A.; Giuffrè O.; Piazzese D.; Sammartano S. (2012) Coord. Chem. Rev. 256, 222–239. 10.1016/j.ccr.2011.06.027. DOI
Chillè D.; Foti C.; Giuffrè O. (2018) J. Chem. Thermodyn. 121, 65–71. 10.1016/j.jct.2018.02.009. DOI
Cardiano P.; Foti C.; Giuffrè O. (2017) J. Mol. Liq. 240, 128–137. 10.1016/j.molliq.2017.05.067. DOI
Cardiano P.; De Stefano C.; Foti C.; Giacobello F.; Giuffrè O.; Sammartano S. (2018) J. Mol. Liq. 261, 96–106. 10.1016/j.molliq.2018.04.003. DOI
Cardiano P.; Falcone G.; Foti C.; Giuffrè O.; Sammartano S. (2011) New J. Chem. 35, 800–806. 10.1039/c0nj00768d. DOI
Crea F.; Falcone G.; Foti C.; Giuffrè O.; Materazzi S. (2014) New J. Chem. 38, 3973–3983. 10.1039/C4NJ00830H. DOI
De Stefano C.; Foti C.; Giuffrè O.; Milea D. (2016) New J. Chem. 40, 1443–1453. 10.1039/C5NJ02531A. DOI
Cardiano P.; Chillè D.; Foti C.; Giuffrè O. (2018) Fluid Phase Equilib. 458, 9–15. 10.1016/j.fluid.2017.11.002. DOI
Cardiano P.; Chillè D.; Cordaro M.; Foti C.; Giuffrè O. (2019) J. Chem. Eng. Data 64, 2859–2866. 10.1021/acs.jced.9b00231. DOI