HNF1B, EZH2 and ECI2 in prostate carcinoma. Molecular, immunohistochemical and clinico-pathological study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32873863
PubMed Central
PMC7463257
DOI
10.1038/s41598-020-71427-7
PII: 10.1038/s41598-020-71427-7
Knihovny.cz E-zdroje
- MeSH
- enoyl-CoA-izomeráza genetika metabolismus MeSH
- EZH2 protein genetika metabolismus MeSH
- hepatocytární jaderný faktor 1-beta genetika metabolismus MeSH
- hyperplazie prostaty genetika metabolismus patologie MeSH
- imunohistochemie metody MeSH
- kohortové studie MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- metylace DNA MeSH
- mutace MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- prognóza MeSH
- promotorové oblasti (genetika) MeSH
- prostata patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- stupeň nádoru MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ECI2 protein, human MeSH Prohlížeč
- enoyl-CoA-izomeráza MeSH
- EZH2 protein, human MeSH Prohlížeč
- EZH2 protein MeSH
- hepatocytární jaderný faktor 1-beta MeSH
- HNF1B protein, human MeSH Prohlížeč
- messenger RNA MeSH
Hepatocyte nuclear factor 1 beta (HNF1B) is a tissue specific transcription factor, which seems to play an important role in the carcinogenesis of several tumors. In our study we focused on analyzing HNF1B in prostate carcinoma (PC) and adenomyomatous hyperplasia (AH), as well as its possible relation to the upstream gene EZH2 and downstream gene ECI2. The results of our study showed that on an immunohistochemical level, the expression of HNF1B was low in PC, did not differ between PC and AH, and did not correlate with any clinical outcomes. In PC, mutations of HNF1B gene were rare, but the methylation of its promotor was a common finding and was positively correlated with Gleason score and stage. The relationship between HNF1B and EZH2/ECI2 was equivocal, but EZH2 and ECI2 were positively correlated on both mRNA and protein level. The expression of EZH2 was associated with poor prognosis. ECI2 did not correlate with any clinical outcomes. Our results support the oncosuppressive role of HNF1B in PC, which may be silenced by promotor methylation and other mechanisms, but not by gene mutation. The high expression of EZH2 (especially) and ECI2 in PC seems to be a potential therapeutic target.
Zobrazit více v PubMed
Barbacci E, et al. HNF1beta/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum. Mol. Genet. 2004;13:3139–3149. doi: 10.1093/hmg/ddh338. PubMed DOI
Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J. 1996;10:267–282. doi: 10.1096/fasebj.10.2.8641560. PubMed DOI
3Alvelos, M. I. et al. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: A case report and mutation update. Medicine (Baltimore)94, e469, 10.1097/MD.0000000000000469 (2015). PubMed PMC
Dubois-Laforgue D, et al. Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B (HNF1B) molecular defects. Diabetes Care. 2017;40:1436–1443. doi: 10.2337/dc16-2462. PubMed DOI
Okorn C, et al. HNF1B nephropathy has a slow-progressive phenotype in childhood-with the exception of very early onset cases: Results of the German Multicenter HNF1B Childhood Registry. Pediatr. Nephrol. 2019;34:1065–1075. doi: 10.1007/s00467-018-4188-8. PubMed DOI
Yu DD, Guo SW, Jing YY, Dong YL, Wei LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci. 2015;5:58. doi: 10.1186/s13578-015-0049-3. PubMed DOI PMC
Bartu M, et al. The role of HNF1B in tumorigenesis of solid tumours: A review of current knowledge. Folia Biol. (Praha) 2018;64:71–83. PubMed
Nemejcova K, Cibula D, Dundr P. Expression of HNF-1beta in cervical carcinomas: An immunohistochemical study of 155 cases. Diagn. Pathol. 2015;10:8. doi: 10.1186/s13000-015-0245-9. PubMed DOI PMC
Nemejcova K, et al. Expression, epigenetic and genetic changes of HNF1B in endometrial lesions. Pathol. Oncol. Res. 2016;22:523–530. doi: 10.1007/s12253-015-0037-2. PubMed DOI
Ross-Adams H, et al. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget. 2016;7:74734–74746. doi: 10.18632/oncotarget.12543. PubMed DOI PMC
11Cancer Genome Atlas Research, N. The molecular taxonomy of primary prostate cancer. Cell163, 1011–1025, 10.1016/j.cell.2015.10.025 (2015). PubMed PMC
Terasawa K, et al. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer. 2006;94:914–921. doi: 10.1038/sj.bjc.6602984. PubMed DOI PMC
Wang J, et al. HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene. 2019 doi: 10.1038/s41388-019-1065-2. PubMed DOI PMC
Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–349. doi: 10.1038/nature09784. PubMed DOI PMC
Varambally S, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–629. doi: 10.1038/nature01075. PubMed DOI
Bracken AP, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22:5323–5335. doi: 10.1093/emboj/cdg542. PubMed DOI PMC
Wang X, Brea LT, Yu J. Immune modulatory functions of EZH2 in the tumor microenvironment: implications in cancer immunotherapy. Am. J. Clin. Exp. Urol. 2019;7:85–91. PubMed PMC
Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br. J. Cancer. 2012;106:243–247. doi: 10.1038/bjc.2011.551. PubMed DOI PMC
Chen H, Tu SW, Hsieh JT. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 2005;280:22437–22444. doi: 10.1074/jbc.M501379200. PubMed DOI
Koyanagi M, et al. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J. Biol. Chem. 2005;280:31470–31477. doi: 10.1074/jbc.M504766200. PubMed DOI
Yu J, et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 2007;67:10657–10663. doi: 10.1158/0008-5472.CAN-07-2498. PubMed DOI
Cao Q, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–7284. doi: 10.1038/onc.2008.333. PubMed DOI PMC
Xu K, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338:1465–1469. doi: 10.1126/science.1227604. PubMed DOI PMC
Liu Q, et al. Polycomb group proteins EZH2 and EED directly regulate androgen receptor in advanced prostate cancer. Int. J. Cancer. 2019;145:415–426. doi: 10.1002/ijc.32118. PubMed DOI PMC
Dardenne E, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 2016;30:563–577. doi: 10.1016/j.ccell.2016.09.005. PubMed DOI PMC
Ren G, et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 2012;72:3091–3104. doi: 10.1158/0008-5472.CAN-11-3546. PubMed DOI
Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer. Protein Cell. 2013;4:331–341. doi: 10.1007/s13238-013-2093-2. PubMed DOI PMC
Wu C, et al. Inhibition of EZH2 by chemo- and radiotherapy agents and small molecule inhibitors induces cell death in castration-resistant prostate cancer. Oncotarget. 2016;7:3440–3452. doi: 10.18632/oncotarget.6497. PubMed DOI PMC
Desgrange A, et al. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development. 2017;144:4704–4719. doi: 10.1242/dev.154336. PubMed DOI
Pontoglio M. Hepatocyte nuclear factor 1, a transcription factor at the crossroads of glucose homeostasis. J. Am. Soc. Nephrol. 2000;11(Suppl 16):S140–143. PubMed
Dan C, et al. HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression. Oncol. Lett. 2019;17:1094–1100. doi: 10.3892/ol.2018.9677. PubMed DOI PMC
Itkonen HM, et al. Lipid degradation promotes prostate cancer cell survival. Oncotarget. 2017;8:38264–38275. doi: 10.18632/oncotarget.16123. PubMed DOI PMC
Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016;78:23–44. doi: 10.1146/annurev-physiol-021115-105045. PubMed DOI
Zhang D, et al. Functional characterization of Delta3, Delta2-enoyl-CoA isomerases from rat liver. J. Biol. Chem. 2002;277:9127–9132. doi: 10.1074/jbc.M112228200. PubMed DOI
Fan J, Li X, Issop L, Culty M, Papadopoulos V. ACBD2/ECI2-mediated peroxisome-mitochondria interactions in Leydig cell steroid biosynthesis. Mol. Endocrinol. 2016;30:763–782. doi: 10.1210/me.2016-1008. PubMed DOI PMC
Reddy JK, Mannaerts GP. Peroxisomal lipid metabolism. Annu. Rev. Nutr. 1994;14:343–370. doi: 10.1146/annurev.nu.14.070194.002015. PubMed DOI
37Reddy, J. K. & Rao, M. S. Peroxisome proliferation and hepatocarcinogenesis. IARC Sci. Publ., 225–235 (1992). PubMed
Misra P, Reddy JK. Peroxisome proliferator-activated receptor-alpha activation and excess energy burning in hepatocarcinogenesis. Biochimie. 2014;98:63–74. doi: 10.1016/j.biochi.2013.11.011. PubMed DOI
Nemali MR, et al. Comparison of constitutive and inducible levels of expression of peroxisomal beta-oxidation and catalase genes in liver and extrahepatic tissues of rat. Cancer Res. 1988;48:5316–5324. PubMed
Nemali MR, et al. Differential induction and regulation of peroxisomal enzymes: Predictive value of peroxisome proliferation in identifying certain nonmutagenic carcinogens. Toxicol. Appl. Pharmacol. 1989;97:72–87. doi: 10.1016/0041-008x(89)90056-2. PubMed DOI
Rasmussen AL, et al. Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. J. Virol. 2011;85:11646–11654. doi: 10.1128/JVI.05605-11. PubMed DOI PMC
Sun J, et al. Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat. Genet. 2008;40:1153–1155. doi: 10.1038/ng.214. PubMed DOI PMC
Stevens VL, et al. HNF1B and JAZF1 genes, diabetes, and prostate cancer risk. Prostate. 2010;70:601–607. doi: 10.1002/pros.21094. PubMed DOI PMC
Painter JN, et al. Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Hum. Mol. Genet. 2015;24:1478–1492. doi: 10.1093/hmg/ddu552. PubMed DOI PMC
Berndt SI, et al. Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Hum. Mol. Genet. 2011;20:3322–3329. doi: 10.1093/hmg/ddr213. PubMed DOI PMC
Pharoah, P. D. et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet45, 362–370, 370e361–362, 10.1038/ng.2564 (2013). PubMed PMC
Tong Y, et al. Cumulative evidence for relationships between multiple variants of HNF1B and the risk of prostate and endometrial cancers. BMC Med. Genet. 2018;19:128. doi: 10.1186/s12881-018-0640-7. PubMed DOI PMC
Chornokur G, et al. Variation in HNF1B and obesity may influence prostate cancer risk in African American men: A pilot study. Prostate Cancer. 2013;2013:384594. doi: 10.1155/2013/384594. PubMed DOI PMC
Grisanzio C, et al. Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc. Natl. Acad. Sci. U S A. 2012;109:11252–11257. doi: 10.1073/pnas.1200853109. PubMed DOI PMC
Bubancova, I. et al. Next-generation sequencing approach in methylation analysis of HNF1B and GATA4 genes: Searching for biomarkers in ovarian cancer. Int. J. Mol. Sci.18, 10.3390/ijms18020474 (2017). PubMed PMC
Debiais-Delpech C, et al. Expression patterns of candidate susceptibility genes HNF1beta and CtBP2 in prostate cancer: Association with tumor progression. Urol. Oncol. 2014;32:426–432. doi: 10.1016/j.urolonc.2013.09.006. PubMed DOI
52Testa, U., Castelli, G. & Pelosi, E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines (Basel)6, 10.3390/medicines6030082 (2019). PubMed PMC
Yu J, et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell. 2007;12:419–431. doi: 10.1016/j.ccr.2007.10.016. PubMed DOI
Min J, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat. Med. 2010;16:286–294. doi: 10.1038/nm.2100. PubMed DOI PMC
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI
Hojny J, et al. Identification of novel HNF1B mRNA splicing variants and their qualitative and semi-quantitative profile in selected healthy and tumour tissues. Sci. Rep. 2020;10:6958. doi: 10.1038/s41598-020-63733-x. PubMed DOI PMC
Mallik I, Davila M, Tapia T, Schanen B, Chakrabarti R. Androgen regulates Cdc6 transcription through interactions between androgen receptor and E2F transcription factor in prostate cancer cells. Biochim. Biophys. Acta. 2008;1783:1737–1744. doi: 10.1016/j.bbamcr.2008.05.006. PubMed DOI
El Ouardi D, et al. The inhibition of the histone methyltransferase EZH2 by DZNEP or SiRNA demonstrates its involvement in MGMT, TRA2A, RPS6KA2, and U2AF1 gene regulation in prostate cancer. OMICS. 2020;24:116–118. doi: 10.1089/omi.2019.0162. PubMed DOI
Ma L, et al. Overcoming EZH2 inhibitor resistance by taxane in PTEN-mutated cancer. Theranostics. 2019;9:5020–5034. doi: 10.7150/thno.34700. PubMed DOI PMC
Pan MZ, Song YL, Gao F. MiR-605-3p inhibits malignant progression of prostate cancer by up-regulating EZH2. Eur. Rev. Med. Pharmacol. Sci. 2019;23:8795–8805. doi: 10.26355/eurrev_201910_19274. PubMed DOI
Shan J, et al. Targeting Wnt/EZH2/microRNA-708 signaling pathway inhibits neuroendocrine differentiation in prostate cancer. Cell Death Discov. 2019;5:139. doi: 10.1038/s41420-019-0218-y. PubMed DOI PMC
Shankar E, Franco D, Iqbal O, El-Hayek V, Gupta S. Novel approach to therapeutic targeting of castration-resistant prostate cancer. Med. Hypotheses. 2020;140:109639. doi: 10.1016/j.mehy.2020.109639. PubMed DOI
Wedge DC, et al. Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nat. Genet. 2018;50:682–692. doi: 10.1038/s41588-018-0086-z. PubMed DOI PMC
Bartu M, et al. Expression, epigenetic, and genetic changes of HNF1B in colorectal lesions: An analysis of 145 cases. Pathol. Oncol. Res. 2020 doi: 10.1007/s12253-020-00830-2. PubMed DOI
Huggett JF, et al. The digital MIQE guidelines: Minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 2013;59:892–902. doi: 10.1373/clinchem.2013.206375. PubMed DOI
Ticha I, et al. A comprehensive evaluation of pathogenic mutations in primary cutaneous melanomas, including the identification of novel loss-of-function variants. Sci. Rep. 2019;9:17050. doi: 10.1038/s41598-019-53636-x. PubMed DOI PMC
Gregova M, et al. Leiomyoma with bizarre nuclei: A study of 108 cases focusing on clinicopathological features, morphology, and fumarate hydratase alterations. Pathol. Oncol. Res. 2019 doi: 10.1007/s12253-019-00739-5. PubMed DOI
Wojdacz TK, Dobrovic A, Hansen LL. Methylation-sensitive high-resolution melting. Nat. Protoc. 2008;3:1903–1908. doi: 10.1038/nprot.2008.191. PubMed DOI