• This record comes from PubMed

Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor

. 2020 Mar 09 ; 20 (5) : . [epub] 20200309

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Over the past years, carbon-based materials and especially graphene, have always been known as one of the most famous and popular materials for sensing applications. Graphene poses outstanding electrical and physical properties that make it favorable to be used as a transducer in the gas sensors structure. Graphene experiences remarkable changes in its physical and electrical properties when exposed to various gas molecules. Therefore, in this study, a set of new analytical models are developed to investigate energy band structure, the density of states (DOS), the velocity of charged carriers and I-V characteristics of the graphene after molecular (CO, NO2, H2O) adsorption. The results show that gas adsorption modulates the energy band structure of the graphene that leads to the variation of the energy bandgap, thus the DOS changes. Consequently, graphene converts to semiconducting material, which affects the graphene conductivity and together with the DOS variation, modulate velocity and I-V characteristics of the graphene. These parameters are important factors that can be implemented as sensing parameters and can be used to analyze and develop new sensors based on graphene material.

See more in PubMed

Grieshaber D., MacKenzie R., Vörös J., Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008;8:1400. doi: 10.3390/s80314000. PubMed DOI PMC

Ghadiry M., Ismail R., Naraghi B., Abed S.T., Kavosi D., Fotovatikhah F. A new approach to model sensitivity of graphene-based gas sensors. Semicond. Sci. Technol. 2015;30:045012. doi: 10.1088/0268-1242/30/4/045012. DOI

Ibrahim I., Lim H., Huang N., Pandikumar A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (II) ions. PLoS ONE. 2016;11:e0154557. doi: 10.1371/journal.pone.0154557. PubMed DOI PMC

Kabasawa H., Hiroshi O., Takahashi K., Mitani S. Sensor Device and Electronic Apparatus. US20160155927A1. United States Patent. 2014 Mar 20;

Pourasl A.H., Ahmadi M.T., Rahmani M., Chin H.C., Lim C.S., Ismail R., Tan M.L.P. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 2014;9:1–7. doi: 10.1186/1556-276X-9-33. PubMed DOI PMC

Mohammad Ali Zanjani S., Dousti M., Dolatshahi M. High-precision, resistor less gas pressure sensor and instrumentation amplifier in CNT technology. AEU Int. J. Electron. Commun. 2018;93:325–336. doi: 10.1016/j.aeue.2018.06.018. DOI

Haroon Rashid M., Koel A., Rang T. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons. Sensors. 2019;19:2731. doi: 10.3390/s19122731. PubMed DOI PMC

Tehrani F., Reiner L., Bavarian B. Rapid prototyping of a high sensitivity graphene based glucose sensor strip. PLoS ONE. 2015;10:e0145036. doi: 10.1371/journal.pone.0145036. PubMed DOI PMC

Tao M., Seals R. Multi-component gas mixture measurements using an array of gas sensors and an artificial neural network. J. Microcomput. Appl. 1993;16:203–210. doi: 10.1006/jmca.1993.1018. DOI

Yuan W., Shi G. Graphene-based gas sensors. J. Mater. Chem. A. 2013;1:10078–10091. doi: 10.1039/c3ta11774j. DOI

Pearce R., Iakimov T., Andersson M., Hultman L., Spetz A.L., Yakimova R. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B Chem. 2011;155:451–455. doi: 10.1016/j.snb.2010.12.046. DOI

Wetchakun K., Samerjai T., Tamaekong N., Liewhiran C., Siriwong C., Kruefu V., Wisitsoraat A., Tuantranont A., Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011;160:580–591. doi: 10.1016/j.snb.2011.08.032. DOI

Sutter P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 2009;8:171–172. doi: 10.1038/nmat2392. PubMed DOI

Kim K., Choi J.-Y., Kim T., Cho S.-H., Chung H.-J. A role for graphene in silicon-based semiconductor devices. Nature. 2011;479:338–344. doi: 10.1038/nature10680. PubMed DOI

Latif U., Dickert F. Graphene hybrid materials in gas sensing applications. Sensors. 2015;15:30504–30524. doi: 10.3390/s151229814. PubMed DOI PMC

Yoon H.J., Yang J.H., Zhou Z., Yang S.S., Cheng M.M.-C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 2011;157:310–313. doi: 10.1016/j.snb.2011.03.035. DOI

Farmer D.B., Golizadeh-Mojarad R., Perebeinos V., Lin Y.M., Tulevski G.S., Tsang J.C., Avouris P. Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2009;9:388–392. doi: 10.1021/nl803214a. PubMed DOI

Pourasl A.H., Ahmadi M.T., Ismail R., Gharaei N. Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption. 2017;23:767–777. doi: 10.1007/s10450-017-9895-0. DOI

Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Abadi H.K.F., Ahmadi M., Yusof R., Saeidmanesh M., Rahmani M., Kiani M.J., Ghadiry M. Development of Carbon Nanotube Based Biosensors Model for Detection of Single-Nucleotide Polymorphism. Sci. Adv. Mater. 2014;6:513–519. doi: 10.1166/sam.2014.1745. DOI

Ghadiry M., Gholami M., Lai C., Ahmad H., Chong W. Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2. PLoS ONE. 2016;11:e0153949. doi: 10.1371/journal.pone.0153949. PubMed DOI PMC

Ko G., Kim H.-Y., Ahn J., Park Y.-M., Lee K.-Y., Kim J. Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 2010;10:1002–1004. doi: 10.1016/j.cap.2009.12.024. DOI

Lin X., Ni J., Fang C. Adsorption capacity of H2O, NH3, CO, and NO2 on the pristine graphene. J. Appl. Phys. 2013;113:034306. doi: 10.1063/1.4776239. DOI

Joshi N., Hayasaka T., Liu Y., Liu H., Oliveira O.N., Lin L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta. 2018;185:213. doi: 10.1007/s00604-018-2750-5. PubMed DOI

Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A.P., Saleh M., Feng X. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010;466:470–473. doi: 10.1038/nature09211. PubMed DOI

Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9:1752–1758. doi: 10.1021/nl803279t. PubMed DOI

Biabanifard M., Abrishamian M.S. Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 2018;95:256–263. doi: 10.1016/j.aeue.2018.08.027. DOI

Huang X., Zeng Z., Fan Z., Liu J., Zhang H. Graphene-Based Electrodes. Adv. Mater. 2012;24:5979–6004. doi: 10.1002/adma.201201587. PubMed DOI

Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis. 2010;22:1027–1036. doi: 10.1002/elan.200900571. DOI

Wu W., Liu Z., Jauregui L.A., Yu Q., Pillai R., Cao H., Bao J., Chen Y.P., Pei S.-S. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens. Actuators B Chem. 2010;150:296–300. doi: 10.1016/j.snb.2010.06.070. DOI

Su P.-G., Peng S.-L. Fabrication and NO 2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta. 2015;132:398–405. doi: 10.1016/j.talanta.2014.09.034. PubMed DOI

Drewniak S., Muzyka R., Stolarczyk A., Pustelny T., Kotyczka-Morańska M., Setkiewicz M. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors. 2016;16:103. doi: 10.3390/s16010103. PubMed DOI PMC

Yavari F., Chen Z., Thomas A.V., Ren W., Cheng H.-M., Koratkar N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 2011;1:166. doi: 10.1038/srep00166. PubMed DOI PMC

El-Safty S.A., Shenashen M., Ismael M., Khairy M., Awual M.R. Mesoporous aluminosilica sensors for the visual removal and detection of Pd (II) and Cu (II) ions. Microporous Mesoporous Mater. 2013;166:195–205. doi: 10.1016/j.micromeso.2012.03.021. DOI

Rahmani M., Ahmadi M., Karimi H., Kiani M., Akbari E., Ismail R. Analytical modeling of monolayer graphene-based NO2 sensor. Sens. Lett. 2013;11:270–275. doi: 10.1166/sl.2013.2742. DOI

Akbari E., Ahmadi M., Kiani M., Feizabadi H.K., Rahmani M., Khalid M. Monolayer graphene based CO2 gas sensor analytical model. J. Comput. Theor. Nanosci. 2013;10:1301–1304. doi: 10.1166/jctn.2013.2846. DOI

Akbari E., Arora V.K., Enzevaee A., Ahmadi M.T., Saeidmanesh M., Khaledian M., Karimi H., Yusof R. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J. Nanotechnol. 2014;5:726–734. doi: 10.3762/bjnano.5.85. PubMed DOI PMC

Khaledian M., Ismail R., Saeidmanesh M., Khalediana P. Analytical modeling of the sensing parameters for graphene nanoscroll-based gas sensors. RSC Adv. 2015;5:54700–54709. doi: 10.1039/C5RA01150G. DOI

Zhao K., Zhao M., Wang Z., Fan Y. Tight-binding model for the electronic structures of SiC and BN nanoribbons. Phys. E Low Dimens. Syst. Nanostruct. 2010;43:440–445. doi: 10.1016/j.physe.2010.08.025. DOI

Modarresi M., Roknabadi M., Shahtahmasbi N. Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes. Phys. E Low Dimens. Syst. Nanostruct. 2011;43:1751–1754. doi: 10.1016/j.physe.2011.06.006. DOI

Saffarzadeh A. Modeling of gas adsorption on graphene nanoribbons. J. Appl. Phys. 2010;107:114309. doi: 10.1063/1.3409870. DOI

Tien H.M., Chau N.H., Loan P.T.K. Tight-binding calculations of band structure and conductance in graphene nano-ribbons. Commun. Phys. 2009;19:1–8. doi: 10.15625/0868-3166/19/1/232. DOI

Moradian R., Mohammadi Y., Ghobadi N. Investigation of gas sensing properties of armchair graphene nanoribbons. J. Phys. Condens. Matter. 2008;20:425211. doi: 10.1088/0953-8984/20/42/425211. DOI

Pourasl A.H., Ariffin S.H.S., Ahmadi M.T., Ismail R., Gharaei N. A carrier velocity model for electrical detection of gas molecules. Beilstein J. Nanotechnol. 2019;10:644–653. doi: 10.3762/bjnano.10.64. PubMed DOI PMC

Zhang Y.-H., Chen Y.-B., Zhou K.-G., Liu C.-H., Zeng J., Zhang H.-L., Peng Y. Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology. 2009;20:185504. doi: 10.1088/0957-4484/20/18/185504. PubMed DOI

Sanyal B., Eriksson O., Jansson U., Grennberg H. Molecular adsorption in graphene with divacancy defects. Phys. Rev. B. 2009;79:113409. doi: 10.1103/PhysRevB.79.113409. DOI

Zhou S.Y., Gweon G.-H., Fedorov A., First P.d., De Heer W., Lee D.-H., Guinea F., Neto A.C., Lanzara A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007;6:770. doi: 10.1038/nmat2003. PubMed DOI

Datta S. Quantum Transport: Atom to Transistor. Cambridge University Press; Cambridge, UK: 2005.

Garber L. Graphene Use Growing in Transistors and Other Settings. IEEE Comput. Soc. 2011;44:17. doi: 10.1109/MC.2011.216. DOI

Harrison W.A. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. Courier Corporation; North Chelmsford, MA, USA: 2012.

Ahmadi M.T.I., Razali Anwar S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; Hershey, PA, USA: 2016.

Ismail R., Ahmadi M.T., Anwar S. Advanced Nanoelectronics. CRC Press; Boca Raton, FL, USA: 2012.

Newest 20 citations...

See more in
Medvik | PubMed

Monolayer Twisted Graphene-Based Schottky Transistor

. 2021 Jul 23 ; 14 (15) : . [epub] 20210723

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...