Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32182921
PubMed Central
PMC7085747
DOI
10.3390/s20051506
PII: s20051506
Knihovny.cz E-resources
- Keywords
- I-V characteristics, adsorption, analytical modeling, gas sensor, graphene,
- Publication type
- Journal Article MeSH
Over the past years, carbon-based materials and especially graphene, have always been known as one of the most famous and popular materials for sensing applications. Graphene poses outstanding electrical and physical properties that make it favorable to be used as a transducer in the gas sensors structure. Graphene experiences remarkable changes in its physical and electrical properties when exposed to various gas molecules. Therefore, in this study, a set of new analytical models are developed to investigate energy band structure, the density of states (DOS), the velocity of charged carriers and I-V characteristics of the graphene after molecular (CO, NO2, H2O) adsorption. The results show that gas adsorption modulates the energy band structure of the graphene that leads to the variation of the energy bandgap, thus the DOS changes. Consequently, graphene converts to semiconducting material, which affects the graphene conductivity and together with the DOS variation, modulate velocity and I-V characteristics of the graphene. These parameters are important factors that can be implemented as sensing parameters and can be used to analyze and develop new sensors based on graphene material.
See more in PubMed
Grieshaber D., MacKenzie R., Vörös J., Reimhult E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008;8:1400. doi: 10.3390/s80314000. PubMed DOI PMC
Ghadiry M., Ismail R., Naraghi B., Abed S.T., Kavosi D., Fotovatikhah F. A new approach to model sensitivity of graphene-based gas sensors. Semicond. Sci. Technol. 2015;30:045012. doi: 10.1088/0268-1242/30/4/045012. DOI
Ibrahim I., Lim H., Huang N., Pandikumar A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (II) ions. PLoS ONE. 2016;11:e0154557. doi: 10.1371/journal.pone.0154557. PubMed DOI PMC
Kabasawa H., Hiroshi O., Takahashi K., Mitani S. Sensor Device and Electronic Apparatus. US20160155927A1. United States Patent. 2014 Mar 20;
Pourasl A.H., Ahmadi M.T., Rahmani M., Chin H.C., Lim C.S., Ismail R., Tan M.L.P. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 2014;9:1–7. doi: 10.1186/1556-276X-9-33. PubMed DOI PMC
Mohammad Ali Zanjani S., Dousti M., Dolatshahi M. High-precision, resistor less gas pressure sensor and instrumentation amplifier in CNT technology. AEU Int. J. Electron. Commun. 2018;93:325–336. doi: 10.1016/j.aeue.2018.06.018. DOI
Haroon Rashid M., Koel A., Rang T. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons. Sensors. 2019;19:2731. doi: 10.3390/s19122731. PubMed DOI PMC
Tehrani F., Reiner L., Bavarian B. Rapid prototyping of a high sensitivity graphene based glucose sensor strip. PLoS ONE. 2015;10:e0145036. doi: 10.1371/journal.pone.0145036. PubMed DOI PMC
Tao M., Seals R. Multi-component gas mixture measurements using an array of gas sensors and an artificial neural network. J. Microcomput. Appl. 1993;16:203–210. doi: 10.1006/jmca.1993.1018. DOI
Yuan W., Shi G. Graphene-based gas sensors. J. Mater. Chem. A. 2013;1:10078–10091. doi: 10.1039/c3ta11774j. DOI
Pearce R., Iakimov T., Andersson M., Hultman L., Spetz A.L., Yakimova R. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B Chem. 2011;155:451–455. doi: 10.1016/j.snb.2010.12.046. DOI
Wetchakun K., Samerjai T., Tamaekong N., Liewhiran C., Siriwong C., Kruefu V., Wisitsoraat A., Tuantranont A., Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011;160:580–591. doi: 10.1016/j.snb.2011.08.032. DOI
Sutter P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 2009;8:171–172. doi: 10.1038/nmat2392. PubMed DOI
Kim K., Choi J.-Y., Kim T., Cho S.-H., Chung H.-J. A role for graphene in silicon-based semiconductor devices. Nature. 2011;479:338–344. doi: 10.1038/nature10680. PubMed DOI
Latif U., Dickert F. Graphene hybrid materials in gas sensing applications. Sensors. 2015;15:30504–30524. doi: 10.3390/s151229814. PubMed DOI PMC
Yoon H.J., Yang J.H., Zhou Z., Yang S.S., Cheng M.M.-C. Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B Chem. 2011;157:310–313. doi: 10.1016/j.snb.2011.03.035. DOI
Farmer D.B., Golizadeh-Mojarad R., Perebeinos V., Lin Y.M., Tulevski G.S., Tsang J.C., Avouris P. Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2009;9:388–392. doi: 10.1021/nl803214a. PubMed DOI
Pourasl A.H., Ahmadi M.T., Ismail R., Gharaei N. Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance. Adsorption. 2017;23:767–777. doi: 10.1007/s10450-017-9895-0. DOI
Novoselov K.S., Geim A.K., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Abadi H.K.F., Ahmadi M., Yusof R., Saeidmanesh M., Rahmani M., Kiani M.J., Ghadiry M. Development of Carbon Nanotube Based Biosensors Model for Detection of Single-Nucleotide Polymorphism. Sci. Adv. Mater. 2014;6:513–519. doi: 10.1166/sam.2014.1745. DOI
Ghadiry M., Gholami M., Lai C., Ahmad H., Chong W. Ultra-sensitive humidity sensor based on optical properties of graphene oxide and nano-anatase TiO2. PLoS ONE. 2016;11:e0153949. doi: 10.1371/journal.pone.0153949. PubMed DOI PMC
Ko G., Kim H.-Y., Ahn J., Park Y.-M., Lee K.-Y., Kim J. Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 2010;10:1002–1004. doi: 10.1016/j.cap.2009.12.024. DOI
Lin X., Ni J., Fang C. Adsorption capacity of H2O, NH3, CO, and NO2 on the pristine graphene. J. Appl. Phys. 2013;113:034306. doi: 10.1063/1.4776239. DOI
Joshi N., Hayasaka T., Liu Y., Liu H., Oliveira O.N., Lin L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta. 2018;185:213. doi: 10.1007/s00604-018-2750-5. PubMed DOI
Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A.P., Saleh M., Feng X. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. 2010;466:470–473. doi: 10.1038/nature09211. PubMed DOI
Wei D., Liu Y., Wang Y., Zhang H., Huang L., Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009;9:1752–1758. doi: 10.1021/nl803279t. PubMed DOI
Biabanifard M., Abrishamian M.S. Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 2018;95:256–263. doi: 10.1016/j.aeue.2018.08.027. DOI
Huang X., Zeng Z., Fan Z., Liu J., Zhang H. Graphene-Based Electrodes. Adv. Mater. 2012;24:5979–6004. doi: 10.1002/adma.201201587. PubMed DOI
Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis. 2010;22:1027–1036. doi: 10.1002/elan.200900571. DOI
Wu W., Liu Z., Jauregui L.A., Yu Q., Pillai R., Cao H., Bao J., Chen Y.P., Pei S.-S. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens. Actuators B Chem. 2010;150:296–300. doi: 10.1016/j.snb.2010.06.070. DOI
Su P.-G., Peng S.-L. Fabrication and NO 2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta. 2015;132:398–405. doi: 10.1016/j.talanta.2014.09.034. PubMed DOI
Drewniak S., Muzyka R., Stolarczyk A., Pustelny T., Kotyczka-Morańska M., Setkiewicz M. Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors. 2016;16:103. doi: 10.3390/s16010103. PubMed DOI PMC
Yavari F., Chen Z., Thomas A.V., Ren W., Cheng H.-M., Koratkar N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 2011;1:166. doi: 10.1038/srep00166. PubMed DOI PMC
El-Safty S.A., Shenashen M., Ismael M., Khairy M., Awual M.R. Mesoporous aluminosilica sensors for the visual removal and detection of Pd (II) and Cu (II) ions. Microporous Mesoporous Mater. 2013;166:195–205. doi: 10.1016/j.micromeso.2012.03.021. DOI
Rahmani M., Ahmadi M., Karimi H., Kiani M., Akbari E., Ismail R. Analytical modeling of monolayer graphene-based NO2 sensor. Sens. Lett. 2013;11:270–275. doi: 10.1166/sl.2013.2742. DOI
Akbari E., Ahmadi M., Kiani M., Feizabadi H.K., Rahmani M., Khalid M. Monolayer graphene based CO2 gas sensor analytical model. J. Comput. Theor. Nanosci. 2013;10:1301–1304. doi: 10.1166/jctn.2013.2846. DOI
Akbari E., Arora V.K., Enzevaee A., Ahmadi M.T., Saeidmanesh M., Khaledian M., Karimi H., Yusof R. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications. Beilstein J. Nanotechnol. 2014;5:726–734. doi: 10.3762/bjnano.5.85. PubMed DOI PMC
Khaledian M., Ismail R., Saeidmanesh M., Khalediana P. Analytical modeling of the sensing parameters for graphene nanoscroll-based gas sensors. RSC Adv. 2015;5:54700–54709. doi: 10.1039/C5RA01150G. DOI
Zhao K., Zhao M., Wang Z., Fan Y. Tight-binding model for the electronic structures of SiC and BN nanoribbons. Phys. E Low Dimens. Syst. Nanostruct. 2010;43:440–445. doi: 10.1016/j.physe.2010.08.025. DOI
Modarresi M., Roknabadi M., Shahtahmasbi N. Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene electrodes. Phys. E Low Dimens. Syst. Nanostruct. 2011;43:1751–1754. doi: 10.1016/j.physe.2011.06.006. DOI
Saffarzadeh A. Modeling of gas adsorption on graphene nanoribbons. J. Appl. Phys. 2010;107:114309. doi: 10.1063/1.3409870. DOI
Tien H.M., Chau N.H., Loan P.T.K. Tight-binding calculations of band structure and conductance in graphene nano-ribbons. Commun. Phys. 2009;19:1–8. doi: 10.15625/0868-3166/19/1/232. DOI
Moradian R., Mohammadi Y., Ghobadi N. Investigation of gas sensing properties of armchair graphene nanoribbons. J. Phys. Condens. Matter. 2008;20:425211. doi: 10.1088/0953-8984/20/42/425211. DOI
Pourasl A.H., Ariffin S.H.S., Ahmadi M.T., Ismail R., Gharaei N. A carrier velocity model for electrical detection of gas molecules. Beilstein J. Nanotechnol. 2019;10:644–653. doi: 10.3762/bjnano.10.64. PubMed DOI PMC
Zhang Y.-H., Chen Y.-B., Zhou K.-G., Liu C.-H., Zeng J., Zhang H.-L., Peng Y. Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study. Nanotechnology. 2009;20:185504. doi: 10.1088/0957-4484/20/18/185504. PubMed DOI
Sanyal B., Eriksson O., Jansson U., Grennberg H. Molecular adsorption in graphene with divacancy defects. Phys. Rev. B. 2009;79:113409. doi: 10.1103/PhysRevB.79.113409. DOI
Zhou S.Y., Gweon G.-H., Fedorov A., First P.d., De Heer W., Lee D.-H., Guinea F., Neto A.C., Lanzara A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007;6:770. doi: 10.1038/nmat2003. PubMed DOI
Datta S. Quantum Transport: Atom to Transistor. Cambridge University Press; Cambridge, UK: 2005.
Garber L. Graphene Use Growing in Transistors and Other Settings. IEEE Comput. Soc. 2011;44:17. doi: 10.1109/MC.2011.216. DOI
Harrison W.A. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. Courier Corporation; North Chelmsford, MA, USA: 2012.
Ahmadi M.T.I., Razali Anwar S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; Hershey, PA, USA: 2016.
Ismail R., Ahmadi M.T., Anwar S. Advanced Nanoelectronics. CRC Press; Boca Raton, FL, USA: 2012.
Monolayer Twisted Graphene-Based Schottky Transistor