Monolayer Twisted Graphene-Based Schottky Transistor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34361302
PubMed Central
PMC8348481
DOI
10.3390/ma14154109
PII: ma14154109
Knihovny.cz E-zdroje
- Klíčová slova
- diameter, geometry characteristic, quantum tunneling, schottky transistor, twisted graphene,
- Publikační typ
- časopisecké články MeSH
The outstanding properties of graphene-based components, such as twisted graphene, motivates nanoelectronic researchers to focus on their applications in device technology. Twisted graphene as a new class of graphene structures is investigated in the platform of transistor application in this research study. Therefore, its geometry effect on Schottky transistor operation is analyzed and the relationship between the diameter of twist and number of twists are explored. A metal-semiconductor-metal twisted graphene-based junction as a Schottky transistor is considered. By employing the dispersion relation and quantum tunneling the variation of transistor performance under channel length, the diameter of twisted graphene, and the number of twists deviation are studied. The results show that twisted graphene with a smaller diameter affects the efficiency of twisted graphene-based Schottky transistors. Additionally, as another main characteristic, the ID-VGS is explored, which indicates that the threshold voltage is increased by diameter and number of twists in this type of transistor.
Zobrazit více v PubMed
Rallis K., Dimitrakis P., Karafyllidis I.G., Rubio A., Sirakoulis G.C. Electronic Properties of Graphene Nanoribbons with Defects. IEEE Trans. Nanotechnol. 2021;20:151–160. doi: 10.1109/TNANO.2021.3055135. DOI
Koloor S.S.R., Rahimian-Koloor S., Karimzadeh A., Hamdi M., Petrů M., Tamin M. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers. 2019;11:1435. doi: 10.3390/polym11091435. PubMed DOI PMC
Hosseingholipourasl A., Hafizah Syed Ariffin S., Al-Otaibi Y.D., Akbari E., Hamid F., Koloor S.S.R., Petrů M. Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor. Sensors. 2020;20:1506. doi: 10.3390/s20051506. PubMed DOI PMC
Molitor F., Güttinger J., Stampfer C., Dröscher S., Jacobsen A., Ihn T., Ensslin K. Electronic properties of graphene nanostructures. J. Phys. Condens. Matter. 2011;23:243201. doi: 10.1088/0953-8984/23/24/243201. PubMed DOI
Khademhosseini V., Dideban D., Ahmadi M., Ismail R. Current analysis of single electron transistor based on graphene double quantum dots. ECS J. Solid State Sci. Technol. 2020;9:021003. doi: 10.1149/2162-8777/ab6980. DOI
Zoghi M., Goharrizi A.Y. Strain-induced armchair graphene nanoribbon resonant-tunneling diodes. IEEE Trans. Electron Devices. 2017;64:4322–4326. doi: 10.1109/TED.2017.2738838. DOI
Norouzi M., Ahmadi R., Norian E., Ahmadi M.T., Ismail R. The Geometry Variation Effect on Carbon Atom Wire for Nano-Electronic Applications. J. Nanoelectron. Optoelectron. 2019;14:1120–1125. doi: 10.1166/jno.2019.2606. DOI
Giubileo F., Di Bartolomeo A. The role of contact resistance in graphene field-effect devices. Progress Surf. Sci. 2017;92:143–175. doi: 10.1016/j.progsurf.2017.05.002. DOI
Akinwande D., Huyghebaert C., Wang C.-H., Serna M.I., Goossens S., Li L.-J., Wong H.-S.P., Koppens F.H. Graphene and two-dimensional materials for silicon technology. Nature. 2019;573:507–518. doi: 10.1038/s41586-019-1573-9. PubMed DOI
Ahmadi R., Ahmadi M.T., Ismail R. Carbon nano-particle synthesized by pulsed arc discharge method as a light emitting device. J. Electron. Mater. 2018;47:4003–4009. doi: 10.1007/s11664-018-6285-7. DOI
Giubileo F., Martucciello N., Di Bartolomeo A. Focus on graphene and related materials. Nanotechnology. 2017;28:410201. doi: 10.1088/1361-6528/aa848d. PubMed DOI
Yang B., Chen J., Liu B., Ding Y., Tang Y., Yan X. One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. J. Mater. Chem. A. 2021;9:6352–6360. doi: 10.1039/D1TA00404B. DOI
Hamzah A., Ismail R. Performance prediction of Graphene Nanoscroll and Carbon Nanotube transistors; Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics (ICSE); Kuala Lumpur, Malaysia. 17 August 2016; pp. 149–152.
He M., Li Y., Cai J., Liu Y., Watanabe K., Taniguchi T., Xu X., Yankowitz M. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 2021;17:26–30. doi: 10.1038/s41567-020-1030-6. DOI
Da Liao Y., Kang J., Breiø C.N., Xu X.Y., Wu H.-Q., Andersen B.M., Fernandes R.M., Meng Z.Y. Correlation-induced insulating topological phases at charge neutrality in twisted bilayer graphene. Phys. Rev. X. 2021;11:011014.
Saraswat V., Jacobberger R.M., Arnold M.S. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano. 2021;15:3674–3708. doi: 10.1021/acsnano.0c07835. PubMed DOI
Liang G., Neophytou N., Lundstrom M.S., Nikonov D.E. Contact effects in graphene nanoribbon transistors. Nano Lett. 2008;8:1819–1824. doi: 10.1021/nl080255r. PubMed DOI
Mogera U., Kulkarni G.U. A new twist in graphene research: Twisted graphene. Carbon. 2020;156:470–487. doi: 10.1016/j.carbon.2019.09.053. DOI
Robinson J.T., Schmucker S.W., Diaconescu C.B., Long J.P., Culbertson J.C., Ohta T., Friedman A.L., Beechem T.E. Electronic hybridization of large-area stacked graphene films. ACS Nano. 2013;7:637–644. doi: 10.1021/nn304834p. PubMed DOI
Chen X.D., Xin W., Jiang W.S., Liu Z.B., Chen Y., Tian J.G. High-Precision Twist-Controlled Bilayer and Trilayer Graphene. Adv. Mater. 2016;28:2563–2570. doi: 10.1002/adma.201505129. PubMed DOI
Wang B., Huang M., Kim N.Y., Cunning B.V., Huang Y., Qu D., Chen X., Jin S., Biswal M., Zhang X. Controlled folding of single crystal graphene. Nano Lett. 2017;17:1467–1473. doi: 10.1021/acs.nanolett.6b04459. PubMed DOI
Kim K., Yankowitz M., Fallahazad B., Kang S., Movva H.C., Huang S., Larentis S., Corbet C.M., Taniguchi T., Watanabe K. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016;16:1989–1995. doi: 10.1021/acs.nanolett.5b05263. PubMed DOI
Liu J.-B., Li P.-J., Chen Y.-F., Wang Z.-G., Qi F., He J.-R., Zheng B.-J., Zhou J.-H., Zhang W.-L., Gu L. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition. Sci. Rep. 2015;5:1–9. doi: 10.1038/srep15285. PubMed DOI PMC
Mogera U., Dhanya R., Pujar R., Narayana C., Kulkarni G.U. Highly decoupled graphene multilayers: Turbostraticity at its best. J. Phys. Chem. Lett. 2015;6:4437–4443. doi: 10.1021/acs.jpclett.5b02145. PubMed DOI
Dass D., Prasher R., Vaid R. Analytical study of unit cell and molecular structures of single walled carbon nanotubes. Int. J. Comput. Eng. Res. 2012;2:1447–1457.
Ahmadi M.T., Ahmadi R., Nguyen T.K. Graphene nanoscroll geometry effect on transistor performance. J. Electron. Mater. 2020;49:544–550. doi: 10.1007/s11664-019-07801-7. DOI
Khaledian M., Ismail R., Saeidmanesh M., Ahmadi M., Akbari E. Carrier statistics and quantum capacitance models of graphene nanoscroll. J. Nanomater. 2014;2014:1–6. doi: 10.1155/2014/762143. DOI
Levi A.F.J. Applied Quantum Mechanics. Cambridge University Press; Cambridge, UK: 2006.
Rahmani M., Ahmadi M.T., Abadi H.K.F., Saeidmanesh M., Akbari E., Ismail R. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications. Nanoscale Res. Lett. 2013;8:1–13. doi: 10.1186/1556-276X-8-55. PubMed DOI PMC
Ismail R., Ahmadi M.T., Anwar S. Advanced Nanoelectronics. CRC Press; New York, NY, USA: 2018.
Mirza M.M., Schupp F.J., Mol J.A., MacLaren D.A., Briggs G.A.D., Paul D.J. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-03138-5. PubMed DOI PMC
Liu A., Peng Q. A molecular dynamics study of the mechanical properties of twisted bilayer graphene. Micromachines. 2018;9:440. doi: 10.3390/mi9090440. PubMed DOI PMC
Zheng S., Cao Q., Liu S., Peng Q. Atomic structure and mechanical properties of twisted bilayer graphene. J. Composites Sci. 2019;3:2. doi: 10.3390/jcs3010002. DOI
Kosar N., Ayub K., Mahmood T. Surface functionalization of twisted graphene C32H15 and C104H52 derivatives with alkalis and superalkalis for NLO response; a DFT study. J. Mol. Graph. Model. 2021;102:107794. doi: 10.1016/j.jmgm.2020.107794. PubMed DOI