A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32193460
PubMed Central
PMC7081271
DOI
10.1038/s41598-020-62086-9
PII: 10.1038/s41598-020-62086-9
Knihovny.cz E-resources
- MeSH
- Cell Cycle physiology MeSH
- Time Factors MeSH
- Chromosomes, Plant * metabolism MeSH
- Genome, Plant genetics MeSH
- Genomics methods MeSH
- Hydroxyurea MeSH
- Metaphase MeSH
- Mitotic Index MeSH
- Nitrobenzenes MeSH
- Organothiophosphorus Compounds MeSH
- Flow Cytometry methods MeSH
- Buffers MeSH
- Saccharum cytology genetics MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- amiprophos methyl MeSH Browser
- Hydroxyurea MeSH
- Nitrobenzenes MeSH
- Organothiophosphorus Compounds MeSH
- Buffers MeSH
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
See more in PubMed
Souza GM, et al. The Sugarcane Genome Challenge: Strategies for Sequencing a Highly Complex Genome. Tropical Plant Biology. 2011;4:145–156. doi: 10.1007/s12042-011-9079-0. DOI
Grivet L, Daniels C, Glaszmann J-C, D’Hont A. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobotany Research and Applications. 2004;2:009–017. doi: 10.17348/era.2.0.9-17. DOI
Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Molecular Genetics and Genomics. 2010;284:65–73. doi: 10.1007/s00438-010-0546-3. PubMed DOI
Thirugnanasambandam PP, Hoang NV, Henry RJ. The Challenge of Analyzing the Sugarcane Genome. Frontiers in plant science. 2018;9:616–616. doi: 10.3389/fpls.2018.00616. PubMed DOI PMC
Doerner PW. Cell Cycle Regulation in Plants. Plant physiology. 1994;106:823–827. doi: 10.2307/4276136. PubMed DOI PMC
Francis D. The cell cycle in plant development. New Phytologist. 2010;122:1–20. doi: 10.1111/j.1469-8137.1992.tb00048.x. PubMed DOI
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome. Analysis. Frontiers in plant science. 2018;9:1756–1756. doi: 10.3389/fpls.2018.01756. PubMed DOI PMC
Doležel, J., Greilhuber, J. & Suda, J. Flow cytometry with plants: an overview. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, 41–65 (2007).
Ashihara T, Baserga R. Cell synchronization. Methods in enzymology. 1979;58:248–262. doi: 10.1016/S0076-6879(79)58141-5. PubMed DOI
Hartwell LH, Kastan MB. Cell cycle control and cancer. Science (New York, N.Y.) 1994;266:1821–1828. doi: 10.1126/science.7997877. PubMed DOI
Kopecký D, et al. Flow sorting and sequencing meadow fescue chromosome 4F. Plant physiology. 2013;163:1323–1337. doi: 10.1104/pp.113.224105. PubMed DOI PMC
Vrána J, et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.) Genetics. 2000;156:2033–2041. doi: 10.1007/978-94-017-3674-9_70. PubMed DOI PMC
Vrana J, Simkova H, Kubalakova M, Cihalikova J, Dolezel J. Flow cytometric chromosome sorting in plants: the next generation. Methods (San Diego, Calif.) 2012;57:331–337. doi: 10.1016/j.ymeth.2012.03.006. PubMed DOI
Hirt H, Heberle-Bors E. Cell cycle regulation in higher plants. Seminars in Developmental Biology. 1994;5:147–154. doi: 10.1006/sedb.1994.1020. DOI
Dolezel J, Cihalikova J, Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–98. doi: 10.1007/bf00198944. PubMed DOI
Dolezel J, Cihalikova J, Weiserova J, Lucretti S. Cell cycle synchronization in plant root meristems. Methods in cell science: an official journal of the Society for In Vitro Biology. 1999;21:95–107. doi: 10.1023/A:1009876621187. PubMed DOI
Kaeppler HF, Kaeppler SM, Lee JH, Arumuganathan K. Synchronization of cell division in root tips of seven major cereal species for high yields of metaphase chromosomes for flow-cytometric analysis and sorting. Plant Molecular Biology Reporter. 1997;15:141–147. doi: 10.1007/BF02812264. DOI
Mirzaghaderi G. A simple metaphase chromosome preparation from meristematic root tip cells of wheat for karyotyping or in situ hybridization. Afr J Biotechnol. 2010;9:314–318.
Shen J, Xu J, Chen J, Zheng R, Shi J. Cell synchronization and isolation of chromosomes from Chinese fir root tips for flow cytometric analysis. Biotechnology letters. 2015;37:1309–1314. doi: 10.1007/s10529-015-1800-x. PubMed DOI
Polit JT. An improved method for the cell cycle synchronization of Vicia faba root meristem cells. Acta Physiologiae Plantarum. 2008;30:315–324. doi: 10.1007/s11738-007-0124-4. DOI
Vrána J, et al. Flow analysis and sorting of plant chromosomes. Current protocols in cytometry. 2016;78:5.3. 1–5.3. 43. doi: 10.1002/cpcy.9. PubMed DOI
Lysak MA, et al. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.) Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 1999;7:431–444. doi: 10.1023/a:1009293628638. PubMed DOI
Loureiro J, Rodriguez E, Doležel J, Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of botany. 2007;100:875–888. doi: 10.1093/aob/mcm152. PubMed DOI PMC
Li L, Arumuganathan K, Gill KS, Song Y. Flow sorting and microcloning of maize chromosome 1. Hereditas. 2004;141:55–60. doi: 10.1111/j.1601-5223.2004.01847.x. PubMed DOI
Giorgi D, et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Clain E, Brulfert A. Hydroxyurea-induced mitotic synchronization in Allium sativum root meristems. Planta. 1980;150:26–31. doi: 10.1007/bf00385610. PubMed DOI
Li L, et al. Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theoretical and applied genetics. 2001;102:658–663. doi: 10.1007/s001220051694. DOI
Suchánková P, et al. Dissection of the nuclear genome of barley by chromosome flow sorting. Theoretical and applied genetics. 2006;113:651–659. doi: 10.1007/s00122-006-0329-8. PubMed DOI
Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) Theoretical and Applied Genetics. 2002;104:1362–1372. doi: 10.1007/s00122-002-0888-2. PubMed DOI
Lucretti S, Dolezel J, Schubert I, Fuchs J. Flow karyotyping and sorting of Vicia faba chromosomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 1993;85:665–672. doi: 10.1007/bf00225003. PubMed DOI
Kumagai-Sano F, Hayashi T, Sano T, Hasezawa S. Cell cycle synchronization of tobacco BY-2 cells. Nature protocols. 2006;1:2621–2627. doi: 10.1038/nprot.2006.381. PubMed DOI
Gualberti G, Dolezel J, Macas J, Lucretti S. Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 1996;92:744–751. doi: 10.1007/bf00226097. PubMed DOI
Lee JH, et al. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L.) Genome. 1997;40:633–638. doi: 10.1139/g97-083. PubMed DOI
Halfmann RA, Stelly DM, Young DH. Towards improved cell cycle synchronization and chromosome preparation methods in cotton. Journal of Cotton Science. 2007;11:667–678.
Sharma AK. Synchronization in plant cells–an introduction. Methods in cell science: an official journal of the Society for In Vitro. Biology. 1999;21:73–78. doi: 10.1023/A:1009828419370. PubMed DOI
Arumuganathan K, Slattery JP, Tanksley SD, Earle ED. Preparation and flow cytometric analysis of metaphase chromosomes of tomato. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 1991;82:101–111. doi: 10.1007/bf00231283. PubMed DOI
Hopping ME. Preparation and preservation of nuclei from plant tissues for quantitative DNA analysis by flow cytometry. Nz J Bot. 1993;31:391–401. doi: 10.1080/0028825X.1993.10419517. DOI
Bainard JD, Fazekas AJ, Newmaster SG. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytometry. Part A: the journal of the International Society for Analytical Cytology. 2010;77:725–732. doi: 10.1002/cyto.a.20902. PubMed DOI