Sesame lignans increase sympathetic nerve activity and blood flow in rat skeletal muscles
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
32199013
PubMed Central
PMC8565946
DOI
10.33549/physiolres.934277
PII: 934277
Knihovny.cz E-resources
- MeSH
- Hemodynamics drug effects physiology MeSH
- Muscle, Skeletal blood supply drug effects physiology MeSH
- Rats MeSH
- Lignans isolation & purification pharmacology MeSH
- Blood Flow Velocity drug effects physiology MeSH
- Sesamum * MeSH
- Sympathetic Fibers, Postganglionic drug effects physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lignans MeSH
Beneficial effects of sesame lignans, especially antioxidative effects, have been widely reported; however, its potential effects on autonomic nerves have not yet been investigated. Therefore, the current study aimed to investigate the effect of sesame lignans on the autonomic nervous system. The sympathetic nerve activity in rat skeletal muscle was measured using electrophysiological approaches, with blood flow determined using the laser Doppler method. Sesame lignans were administered intragastrically at 2 and 20 mg/kg, and after 60 min, the sympathetic nerve activity was observed to increase by 45.2% and 66.1%, respectively. A significant increase in blood flow (39.6%) was also observed for the 20-mg/kg dose when measured at 55 min after administration. These sympathomimetic effects were completely prevented by subdiaphragmatic vagotomy, and the increase in blood flow was eliminated in the presence of the beta2-adrenergic receptor inhibitor butoxamine. Thus, it is proposed that sesame lignans can increase the blood flow of skeletal muscle, possibly by exciting sympathetic nerve activity through the afferent vagal nerve.
See more in PubMed
AMANO M, OIDA E, MORITANI T. Age-associated alteration of sympatho-vagal balance in a female population assessed through the tone-entropy analysis. Eur J Appl Physiol. 2005;94:602–610. doi: 10.1007/s00421-005-1364-x. PubMed DOI
AMANO M, OIDA E, MORITANI T. A comparative scale of autonomic function with age through the tone-entropy analysis on heart period variation. Eur J Appl Physiol. 2006;98:276–283. doi: 10.1007/s00421-006-0275-9. PubMed DOI
BEPPU Y, IZUMO T, HORII Y, SHEN J, FUJISAKI Y, NAKASHIMA T, TSURUOKA N, NAGAI K. Effects of culture supernatant from Lactobacillus pentosus strain S-PT84 on autonomic nerve activity in rats. In Vivo. 2012;26:355–359. PubMed
BRETHERTON B, ATKINSON L, MURRAY A, CLANCY J, DEUCHARS S, DEUCHARS J. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (Albany Y) 2019:102074. doi: 10.18632/aging.102074. PubMed DOI PMC
FUKUDA Y, NAGATA M, OSAWA T, NAMIKI M. Contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. J Am Oil Chem Soc. 1986;63:1027–1031. doi: 10.1007/BF02673792. DOI
GANONG WF. Review of Medical Physiology LANGE Basic Science. McGraw-Hill; New York: 2005.
HONG L, YI W, LIANGLIANG C, JUNCHENG H, QIN W, XIAOXIANG Z. Hypoglycaemic and hypolipidaemic activities of sesamin from sesame meal and its ability to ameliorate insulin resistance in KK-Ay mice. J Sci Food Agric. 2013;93:1833–1838. doi: 10.1002/jsfa.5974. PubMed DOI
HORII Y, FUJISAKI Y, FUYUKI R, NAGAI K. L-Carnosine’s dose-dependent effects on muscle sympathetic nerves and blood flow. Neurosci Lett. 2015;591:144–148. doi: 10.1016/j.neulet.2015.02.044. PubMed DOI
HUDLICKA O, BROWN M. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res. 2009;46:504–512. doi: 10.1159/000226127. PubMed DOI
IDE T, ONO Y, KAWASHIMA H, KISO Y. Interrelated effects of dihomo-γ-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats. Br J Nutr. 2012;108:1980–1993. doi: 10.1017/S0007114512000141. PubMed DOI
IKEDA T, NISHIJIMA Y, SHIBATA H, KISO Y, OHNUKI K, FUSHIKI T, MORITANI T. Protective effect of sesamin administration on exercise-induced lipid peroxidation. Int J Sports Med. 2003;24:530–534. doi: 10.1055/s-2003-42010. PubMed DOI
KAMIO N, SUZUKI T, WATANABE Y, SUHARA Y, OSAKABE N. A single oral dose of flavan-3-ols enhances energy expenditure by sympathetic nerve stimulation in mice. Free Radic Biol Med. 2016;91:256–263. doi: 10.1016/j.freeradbiomed.2015.12.030. PubMed DOI
KARABULUT M, CRAMER JT, ABE T, SATO Y. Neuromuscular fatigue following low-intensity dynamic exercise wirth externally applied vascular restriction. J Electromyogr Kinesiol. 2010;20:440–447. doi: 10.1016/j.jelekin.2009.06.005. PubMed DOI
KISO Y. Antioxidative roles of sesamin, a functional lignan in sesame seed, and its effect on lipid- and alcohol-metabolism in the liver: a DNA microarray study. Biofactors. 2004;21:191–196. doi: 10.1002/biof.552210139. PubMed DOI
KITA S, MATSUMURA Y, MORIMOTO S, AKIMOTO K, FURUYA M, OKA N, TANAKA T. Antihypertensive effect of sesamin II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy. Biol Pharm Bull. 1995;18:1283–1285. doi: 10.1248/bpb.18.1283. PubMed DOI
KOBAYASHI K, KOBAYASHI Y, HASHIDA-OKUMURA A, IIMORI S, NAGAI K, NAKASHIMA H. Increase in peripheral blood flow due to extraocular direct irradiation of visible light in rats. Am J Physiol Heart Circ Physiol. 2000;279:H1141–H1146. doi: 10.1152/ajpheart.2000.279.3.H1141. PubMed DOI
MARIEB EN, HOEHN K. Anatomy & Physiology. Third editon. Pearson/Benjamin Commings; San Francisco: 2008. pp. 524–527..
MATSUMURA Y, KITA S, MORIMOTO S, AKIMOTO K, FURUYA M, OKA N, TANAKA T. Antihypertensive effect of sesamin I. Protection against deoxycorticosterone acetate-salt-induced hypertension and cardiovascular hypertrophy. Biol Pharm Bull. 1995;18:1016–1019. doi: 10.1248/bpb.18.1016. PubMed DOI
MIYAWAKI T, AONO H, TOYODA-ONO Y, MAEDA H, KISO Y, MORIYAMA K. Antihypertensive effects of sesamin in humans. J Nutr Sci Vitaminol. 2009;55:87–91. doi: 10.3177/jnsv.55.87. PubMed DOI
MIZUNO K, TANAKA M, YAMAGUTI K, KAJIMOTO O, KURATSUNE H, WATANABE Y. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behav Brain Funct. 2011;7:17. doi: 10.1186/1744-9081-7-17. PubMed DOI PMC
NAGAI K, HORII Y, FUJISAKI Y, FUYUKI R, MISONOU Y. Effects of olfactory stimulation with scents of grapefruit and lavender essential oils on the skeletal muscle sympathetic nerve and muscle blood flow in rats. Flavour Fragr J. 2018;33:135–143. doi: 10.1002/ffj.3417. DOI
NAKAI M, HARADA M, NAKAHARA K, AKIMOTO K, SHIBATA H, MIKI W, KISO Y. Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem. 2003;51:1666–1670. doi: 10.1021/jf0258961. PubMed DOI
OSAKABE N, TERAO J. Possible mechanisms of postprandial physiological alterations following flavan 3-ol ingestion. Nutr Rev. 2018;76:174–186. doi: 10.1093/nutrit/nux070. PubMed DOI
STEWART JM. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and chronic fatigue syndrome is characterized by attenuated vagal baroreflex and potentiated sympathetic vasomotion. Pediatr Res. 2000;48:218–226. doi: 10.1203/00006450-200008000-00016. PubMed DOI
SUGAYA M, YASUDA T, SUGA T, OKITA K, ABE T. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise: Change in intramuscular metabolism during BFR exercise. Clin Physiol Funct Imaging. 2011;31:411–413. doi: 10.1111/j.1475-097X.2011.01033.x. PubMed DOI
TAKADA S, KINUGAWA S, MATSUSHITA S, TAKEMOTO D, FURIHATA T, MIZUSHIMA W, FUKUSHIMA A, YOKOTA T, ONO Y, SHIBATA H, OKITA K, TSUTSUI H. Sesamin prevents decline in exercise capacity and impairment of skeletal muscle mitochondrial function in mice with high-fat diet-induced diabetes. Exp Physiol. 2015;100:1319–1330. doi: 10.1113/EP085251. PubMed DOI PMC
TAKEMOTO D, YASUTAKE Y, TOMIMORI N, ONO Y, SHIBATA H, HAYASHI J. Sesame lignans and vitamin E supplementation improve subjective statuses and anti-oxidative capacity in healthy humans with feelings of daily fatigue. Glob J Health Sci. 2015;7:1–10. doi: 10.5539/gjhs.v7n6p1. PubMed DOI PMC
TANIDA M, NIIJIMA A, FUKUDA Y, SAWAI H, TSURUOKA N, SHEN J, YAMADA S, KISO Y, NAGAI K. Dose-dependent effects of L-carnosine on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R447–R455. doi: 10.1152/ajpregu.00275.2004. PubMed DOI
YUKISHITA T, LEE K, KIM S, YUMOTO Y, KOBAYASHI A, SHIRASAWA T, KOBAYASHI H. Age and sex-dependent alterations in heart rate variability. Anti-Aging Medicine. 2010;7:94–99. doi: 10.3793/jaam.7.94. DOI