Global DNA methylation in rats´ liver is not affected by hypercholesterolemic diet
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32199015
PubMed Central
PMC8565938
DOI
10.33549/physiolres.934313
PII: 934313
Knihovny.cz E-zdroje
- MeSH
- cholesterol dietní aplikace a dávkování škodlivé účinky MeSH
- dieta s vysokým obsahem tuků * škodlivé účinky MeSH
- hypercholesterolemie chemicky indukované genetika metabolismus MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- metylace DNA genetika MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol dietní MeSH
Increased plasma cholesterol levels are listed between the major atherosclerosis risk factors. The final plasma cholesterol levels result from the interplay between the genetic and environmental (diet, physical activity) factors. Little is known, how dietary factor influence epigenetics. We have analyzed, if an over-generation feeding of rat with cholesterol influences total liver-DNA methylation, and if total liver-DNA methylation differ between the different rat strains (Prague hereditary hypercholesterolemic rats, Prague hereditary hypertriglyceridemic rats and Wistar Kyoto rats). The animals were feed with high fat (additional 5 % over normal capacity) high cholesterol (2 %) diet for 14 days. DNA methylation in the liver tissue in different generations was analyzed using the liquid chromatography coupled with tandem mass spectrometry. We have not observed any significant changes in total liver-DNA methylation over the 9 generations of animals feed by fat/cholesterol enriched diet. Additionally, there were no differences in DNA methylation between different rat strains. In animal model, the dietary changes (hypercholesterolemic diet) not significantly influence the total DNA methylation status within the liver.
Zobrazit více v PubMed
BACCARELLI A, WRIGHT R, BOLLATI V, LITONJUA A, ZANOBETTI A, TARANTINI L, SPARROW D, VOKONAS P, SCHWARTZ J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 2010;21:819–828. doi: 10.1097/EDE.0b013e3181f20457. PubMed DOI PMC
BAHL A, PÖLLÄNEN E, ISMAIL K, SIPILÄ S, MIKKOLA TM, BERGLUND E, LINDQVIST CM, SYVÄNEN AC, RANTANEN T, KAPRIO J, KOVANEN V, OLLIKAINEN M. Hormone replacement therapy associated white blood cell DNA methylation and gene expression are associated with within-pair differences of body adiposity and bone mass. Twin Res Hum Genet. 2015;18:647–661. doi: 10.1017/thg.2015.82. PubMed DOI
BEFEKADU G, KOVÁR J, POLEDNE R. High sensitivity of PHHC rat to dietary cholesterol. Physiol Res. 1992;41:263–266. PubMed
BOLLATI V, SCHWARTZ J, WRIGHT R, LITONJUA A, TARANTINI L, SUH H, SPARROW D, VOKONAS P, BACCARELLI A. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–239. doi: 10.1016/j.mad.2008.12.003. PubMed DOI PMC
BREITLING LP, YANG R, KORN B, BURWINKEL B, BRENNER H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet. 2011;88:450–457. doi: 10.1016/j.ajhg.2011.03.003. PubMed DOI PMC
CASH HL, McGARVEY ST, HOUSEMAN EA, MARSIT CJ, HAWLEY NL, LAMBERT-MESSERLIAN GM, VIALI S, TUITELE J, KELSEY KT. Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. Epigenetics. 2011;6:1257–1264. doi: 10.4161/epi.6.10.17728. PubMed DOI PMC
CHUONG EB, ELDE NC, FESCHOTTE C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18:71–86. doi: 10.1038/nrg.2016.139. PubMed DOI PMC
DANIEL Z, SWALI A, EMES R, LANGLEY-EVANS SC. The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport. Genes Nutr. 2016;11:27. doi: 10.1186/s12263-016-0541-3. PubMed DOI PMC
DLOUHÁ D, HUBÁČEK JA. Regulatory RNAs and cardiovascular disease - with a special focus on circulating microRNAs. Physiol Res. 2017;66(Suppl 1):S21–S38. doi: 10.33549/physiolres.933588. PubMed DOI
FERGUSON-SMITH AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Gene. 2011;12:565–575. doi: 10.1038/nrg3032. PubMed DOI
HANSSON GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430. PubMed DOI
HERMANN A, GOWHER H, JELTSCH A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci. 2004;61:2571–2587. doi: 10.1007/s00018-004-4201-1. PubMed DOI PMC
HUBACEK JA, BOBKOVA D. Role of cholesterol 7alpha-hydroxylase (CYP7A1) in nutrigenetics and pharmacogenetics of cholesterol lowering. Mol Diagn Ther. 2006;10:93–100. doi: 10.1007/BF03256448. PubMed DOI
HUBÁCEK JA, BOBKOVÁ D, BOHUSLAVOVÁ R, POLEDNE R. Differences in expression of cholesterol 7alpha-hydroxylase between PHHC and Wistar rats. Folia Biol (Praha) 2008;54:18–23. PubMed
HUBACEK JA, STANEK V, GEBAUEROVA M, ADAMKOVA V, LESAUSKAITE V, ZALIADUONYTE-PEKSIENE D, TAMOSIUNAS A, SUPIYEV A, KOSSUMOV A, ZHUMADILOVA A, PITHA J. Traditional risk factors of acute coronary syndrome in four different male populations - total cholesterol value does not seem to be relevant risk factor. Physiol Res. 2017;66(Suppl 1):S121–S128. doi: 10.33549/physiolres.933597. PubMed DOI
HUBACEK JA, ADAMKOVA V, LANSKA V, DLOUHA D. Polygenic hypercholesterolemia: examples of GWAS results and their replication in the Czech-Slavonic population. Physiol Res. 2017;66(Suppl 1):S101–S111. doi: 10.33549/physiolres.933580. PubMed DOI
IRIZARRY RA, LADD-ACOSTA C, WEN B, WU Z, MONTANO C, ONYANGO P, CUI H, GABO K, RONGIONE M, WEBSTER M, JI H, POTASH J, SABUNCIYAN S, FEINBERG AP. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–186. doi: 10.1038/ng.298. PubMed DOI PMC
JJINGO D, CONLEY AB, YI SV, LUNYAK VV, JORDAN IK. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3:462–74. doi: 10.18632/oncotarget.497. PubMed DOI PMC
KATO S, LINDHOLM B, STENVINKEL P, EKSTRÖM TJ, LUTTROPP K, YUZAWA Y, YASUDA Y, TSURUTA Y, MARUYAMA S. DNA hypermethylation and inflammatory markers in incident Japanese dialysis patients. Nephron Extra. 2012;2:159–168. doi: 10.1159/000339437. PubMed DOI PMC
KHYZHA N, ALIZADA A, WILSON MD, FISH JE. Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends Mol Med. 2017;23:332–347. doi: 10.1016/j.molmed.2017.02.004. PubMed DOI
KOVÁŘ J, TONAR Z, HECZKOVÁ M, POLEDNE R. Prague hereditary hypercholesterolemic (PHHC) rat - a model of polygenic hypercholesterolemia. Physiol Res. 2009;58(Suppl 2):S95–S99. PubMed
LEENEN FA, MULLER CP, TURNER JD. DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics. 2016;8:92. doi: 10.1186/s13148-016-0256-8. PubMed DOI PMC
LÉVESQUE ML, CASEY KF, SZYF M, ISMAYLOVA E, LY V, VERNER MP, SUDERMAN M, BRENDGEN M, VITARO F, DIONNE G, BOIVIN M, TREMBLAY RE, BOOIJ L. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics. 2014;9:1410–1421. doi: 10.4161/15592294.2014.970060. PubMed DOI PMC
LI X, FRANKE AA. High-throughput and cost-effective global DNA methylation assay by liquid chromatography-mass spectrometry. Anal Chim Acta. 2011;703:58–63. doi: 10.1016/j.aca.2011.07.014. PubMed DOI PMC
LUSIS AJ. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. PubMed DOI PMC
MILLER SA, DYKES DD, POLESKY HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
NAPOLI C, De NIGRIS F, WELCH JS, CALARA FB, STUART RO, GLASS CK, PALINSKI W. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation. 2002;105:1360–1367. doi: 10.1161/hc1102.106792. PubMed DOI
NICOLETTI CF, NONINO CB, De OLIVEIRA BA, PINHEL MA, MANSEGO ML, MILAGRO FI, ZULET MA, MARTINEZ JA. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg. 2016;26:603–611. doi: 10.1007/s11695-015-1802-8. PubMed DOI
PATHTHINIGE CS, SIRISENA ND, DISSANAYAKE V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis. 2017;16:103. doi: 10.1186/s12944-017-0488-4. PubMed DOI PMC
PEARCE MS, McCONNELL JC, POTTER C, BARRETT LM, PARKER L, MATHERS JC, RELTON CL. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol. 2012;41:210–217. doi: 10.1093/ije/dys020. PubMed DOI PMC
PIKHART H, HUBÁČEK JA, PEASEY A, KUBÍNOVÁ R, BOBÁK M. Association between fasting plasma triglycerides, all-cause and cardiovascular mortality in Czech population. Results from the HAPIEE study. Physiol Res. 2015;64(Suppl 3):S355–S361. PubMed
POLEDNE R, JURČÍKOVÁ-NOVOTNÁ L. Experimental models of hyperlipoproteinemia and atherosclerosis. Physiol Res. 2017;66(Suppl 1):S69–S75. doi: 10.33549/physiolres.933585. PubMed DOI
PORTELA A, ESTELLER M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–1068. doi: 10.1038/nbt.1685. PubMed DOI
SEGAL NL, MONTOYA YS, LOKE YJ, CRAIG JM. Identical twins doubly exchanged at birth: a case report of genetic and environmental influences on the adult epigenome. Epigenomics. 2017;9:5–12. doi: 10.2217/epi-2016-0104. PubMed DOI
SLOTKIN RK, MARTIENSSEN R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–285. doi: 10.1038/nrg2072. PubMed DOI
TALMUD PJ, SHAH S, WHITTALL R, FUTEMA M, HOWARD P, COOPER JA, HARRISON SC, LI K, DRENOS F, KARPE F, NEIL HA, DESCAMPS OS, LANGENBERG C, LENCH N, KIVIMAKI M, WHITTAKER J, HINGORANI AD, KUMARI M, HUMPHRIES SE. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381:1293–1301. doi: 10.1016/S0140-6736(12)62127-8. PubMed DOI
VINSON C, CHATTERJEE R. CG methylation. Epigenomics. 2012;4:655–663. doi: 10.2217/epi.12.55. PubMed DOI PMC
VLACHOVÁ M, HECZKOVÁ M, JIRSA M, POLEDNE R, KOVÁŘ J. The response of hepatic transcriptome to dietary cholesterol in Prague hereditary hypercholesterolemic (PHHC) rat. Physiol Res. 2014;63(Suppl 3):S429–S437. PubMed
VOISIN S, EYNON N, YAN X, BISHOP DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 2015;213:39–59. doi: 10.1111/apha.12414. PubMed DOI
WANG KY, CHEN CC, SHEN CK. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase? Epigenomics. 2014;6:353–263. doi: 10.2217/epi.14.21. PubMed DOI
WANG X, LIU AH, JIA ZW, PU K, CHEN KY, GUO H. Genome-wide DNA methylation patterns in coronary heart disease. Herz Sep. 2017;7 doi: 10.1007/s00059-017-4616-8. PubMed DOI
WONG CC, CASPI A, WILLIAMS B, CRAIG IW, HOUTS R, AMBLER A, MOFFITT TE, MILL J. A longitudinal study of epigenetic variation in twins. Epigenetics. 2010;5:516–526. doi: 10.4161/epi.5.6.12226. PubMed DOI PMC
YATES Z, TARLING EJ, LANGLEY-EVANS SC, SALTER AM. Maternal undernutrition programmes atherosclerosis in the ApoE*3-Leiden mouse. Br J Nutr. 2009;101:1185–1194. doi: 10.1017/S0007114508066786. PubMed DOI PMC