Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31820103014
National Natural Science Foundation of China
31630078
National Natural Science Foundation of China
D20008
111 Project
PubMed
32204732
PubMed Central
PMC7092434
DOI
10.1186/s13071-020-04021-5
PII: 10.1186/s13071-020-04021-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bamboo rat, Cryptosporidium, Molecular epidemiology, Subtype, Zoonotic,
- MeSH
- Cryptosporidium parvum genetika izolace a purifikace MeSH
- Cryptosporidium genetika izolace a purifikace MeSH
- farmy * MeSH
- feces parazitologie MeSH
- genotyp MeSH
- geny rRNA MeSH
- kryptosporidióza epidemiologie parazitologie MeSH
- lidé MeSH
- molekulární epidemiologie MeSH
- Muridae parazitologie MeSH
- oocysty MeSH
- polymerázová řetězová reakce veterinární MeSH
- protozoální DNA MeSH
- zoonózy diagnóza parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína epidemiologie MeSH
- Názvy látek
- protozoální DNA MeSH
BACKGROUND: Bamboo rats are widely farmed in southern China for meat, but their potential in transmitting pathogens to humans and other farm animals remains unclear. METHODS: To understand the transmission of Cryptosporidium spp. in these animals, 709 fecal samples were collected in this study from Chinese bamboo rats (Rhizomys sinensis) on nine farms in Jiangxi, Guangxi and Hainan provinces, China. They were analyzed for Cryptosporidium spp. using PCR and sequence analyses of the small subunit rRNA gene. Cryptosporidium parvum, C. parvum-like and C. ubiquitum-like genotypes identified were subtyped by sequence analysis of the 60 kDa glycoprotein (gp60) gene. RESULTS: Altogether, Cryptosporidium spp. were detected in 209 (29.5%) samples. The detection rate in samples from animals under two months of age (70.0%,105/150) was significantly higher than in samples from animals above 2 months (18.6%, 104/559; χ2 = 150.27, df = 1, P < 0.0001). Four Cryptosporidium species/genotypes were identified: C. parvum (n = 78); C. occultus (n = 1); a new genotype that is genetically related to C. ubiquitum (n = 85); and another new genotype that is genetically related to C. parvum (n = 44). Among them, C. parvum (27,610 ± 71,911 oocysts/gram of feces) and the C. parvum-like genotype (38,679 ± 82,811 oocysts/gram of feces) had higher oocyst shedding intensity than the C. ubiquitum-like genotype (2470 ± 7017 oocysts/gram of feces) and the C. occultus (1012 oocysts/gram of feces). The C. parvum identified belonged to three subtypes in two rare subtype families, including IIpA9 (n = 43), IIpA6 (n = 6) and IIoA15G1 (n = 9), while the C. parvum-like and C. ubiquitum-like genotypes generated very divergent gp60 sequences. CONCLUSIONS: Results of the present study suggest that bamboo rats on the study farms were infected with diverse Cryptosporidium species and divergent C. parvum subtypes, which probably had originated from their native habitats. As similar C. parvum subtypes have been recently detected in humans and farmed macaques, attentions should be paid to the potential role of these new farm animals in the transmission of zoonotic pathogens.
Zobrazit více v PubMed
Fayer R. Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol. 2010;124:90–97. doi: 10.1016/j.exppara.2009.03.005. PubMed DOI
Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol. 2010;124:80–89. doi: 10.1016/j.exppara.2009.03.018. PubMed DOI
Feng Y, Ryan UM, Xiao L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018;34:997–1011. doi: 10.1016/j.pt.2018.07.009. PubMed DOI
Santin M. Clinical and subclinical infections with Cryptosporidium in animals. N Z Vet J. 2013;61:1–10. doi: 10.1080/00480169.2012.731681. PubMed DOI
Feng Y, Xiao L. Molecular epidemiology of cryptosporidiosis in China. Front Microbiol. 2017;8:1701. doi: 10.3389/fmicb.2017.01701. PubMed DOI PMC
Liu X, Zhou X, Zhong Z, Zuo Z, Shi J, Wang Y, et al. Occurrence of novel and rare subtype families of Cryptosporidium in bamboo rats (Rhizomys sinensis) in China. Vet Parasitol. 2015;207:144–148. doi: 10.1016/j.vetpar.2014.11.009. PubMed DOI
Chen L, Hu S, Jiang W, Zhao J, Li N, Guo Y, et al. Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasit Vectors. 2019;12:350. doi: 10.1186/s13071-019-3604-7. PubMed DOI PMC
Li N, Xiao L, Alderisio K, Elwin K, Cebelinski E, Chalmers R, et al. Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg Infect Dis. 2014;20:217–224. doi: 10.3201/eid2002.121797. PubMed DOI PMC
Tang HB, Chen F, Rao G, Bai A, Jiang J, Du Y, et al. Characterization of Akabane virus from domestic bamboo rat, southern China. Vet Microbiol. 2017;207:280–285. doi: 10.1016/j.vetmic.2017.06.018. PubMed DOI
Liu J, Tang CH, Zhou DC, Zeng QB. Current situation and countermeasures of bamboo rat in China. J Hunan Environ-Biolog Polytechnic. 2011;17:1–5.
Cao C, Liang L, Wang W, Luo H, Huang S, Liu D, et al. Common reservoirs for Penicillium marneffei infection in humans and rodents, China. Emerg Infect Dis. 2011;17:209–214. doi: 10.3201/eid1702.100718. PubMed DOI PMC
Huang X, He G, Lu S, Liang Y, Xi L. Role of Rhizomys pruinosus as a natural animal host of Penicillium marneffei in Guangdong, China. Microb Biotechnol. 2015;8:659–664. doi: 10.1111/1751-7915.12275. PubMed DOI PMC
Ma X, Wang Y, Zhang HJ, Wu HX, Zhao GH. First report of Giardia duodenalis infection in bamboo rats. Parasit Vectors. 2018;11:520. doi: 10.1186/s13071-018-3111-2. PubMed DOI PMC
Wang H, Liu Q, Jiang X, Zhang Y, Zhao A, Cui Z, et al. Dominance of zoonotic genotype D of Enterocytozoon bieneusi in bamboo rats (Rhizomys sinensis) Infect Gene Evol. 2019;73:113–118. doi: 10.1016/j.meegid.2019.04.025. PubMed DOI
Zhang H, Li K, Wang Y, Rehman MU, Liu Y, Jin J, et al. Investigation and characterization of beta-lactam resistance in Escherichia coli strains isolated from bamboo rats (Rhizomys sinensis) in Zhejiang province, China. J Vet Med Sci. 2017;79:1633–1636. doi: 10.1292/jvms.16-0447. PubMed DOI PMC
Jiang J, Alderisio KA, Singh A, Xiao L. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol. 2005;71:1135–1141. doi: 10.1128/AEM.71.3.1135-1141.2005. PubMed DOI PMC
Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, et al. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol. 1999;65:3386–3391. doi: 10.1128/AEM.65.8.3386-3391.1999. PubMed DOI PMC
Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F. Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol. 2003;41:2744–2747. doi: 10.1128/JCM.41.6.2744-2747.2003. PubMed DOI PMC
Guo Y, Cebelinski E, Matusevich C, Alderisio KA, Lebbad M, McEvoy J, et al. Subtyping novel zoonotic pathogen Cryptosporidium chipmunk genotype I. J Clin Microbiol. 2015;53:1648–1654. doi: 10.1128/JCM.03436-14. PubMed DOI PMC
Li N, Neumann NF, Ruecker N, Alderisio KA, Sturbaum GD, Villegas EN, et al. Development and evaluation of three real-time PCR assays for genotyping and source tracking Cryptosporidium spp. in water. Appl Environ Microbiol. 2015;81:5845–5854. doi: 10.1128/AEM.01699-15. PubMed DOI PMC
Kellnerova K, Holubova N, Jandova A, Vejcik A, McEvoy J, Sak B, et al. First description of Cryptosporidium ubiquitum XIIa subtype family in farmed fur animals. Eur J Protistol. 2017;59:108–113. doi: 10.1016/j.ejop.2017.03.007. PubMed DOI
Cai M, Guo Y, Pan B, Li N, Wang X, Tang C, et al. Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Vet Parasitol. 2017;241:14–19. doi: 10.1016/j.vetpar.2017.05.005. PubMed DOI
Insulander M, Silverlas C, Lebbad M, Karlsson L, Mattsson JG, Svenungsson B. Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect. 2013;141:1009–1020. doi: 10.1017/S0950268812001665. PubMed DOI PMC
Yan W, Alderisio K, Roellig DM, Elwin K, Chalmers RM, et al. Subtype analysis of zoonotic pathogen Cryptosporidium skunk genotype. Infect Genet Evol. 2017;55:20–25. doi: 10.1016/j.meegid.2017.08.023. PubMed DOI PMC
Kvac M, Vlnata G, Jezkova J, Horcickova M, Konecny R, Hlaskova L, et al. Cryptosporidium occultus sp. n. (Apicomplexa: Cryptosporidiidae) in rats. Eur J Protistol. 2018;63:96–104. doi: 10.1016/j.ejop.2018.02.001. PubMed DOI
Ryan U, Fayer R, Xiao L. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology. 2014;141:1667–1685. doi: 10.1017/S0031182014001085. PubMed DOI
Ong CS, Eisler DL, Alikhani A, Fung VW, Tomblin J, Bowie WR, et al. Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerg Infect Dis. 2002;8:263–268. doi: 10.3201/eid0803.010194. PubMed DOI PMC
Langkjaer RB, Vigre H, Enemark HL, Maddox-Hyttel C. Molecular and phylogenetic characterization of Cryptosporidium and Giardia from pigs and cattle in Denmark. Parasitology. 2007;134:339–350. doi: 10.1017/S0031182006001533. PubMed DOI
Ng-Hublin JS, Singleton GR, Ryan U. Molecular characterization of Cryptosporidium spp. from wild rats and mice from rural communities in the Philippines. Infect Genet Evol. 2013;16:5–12. doi: 10.1016/j.meegid.2013.01.011. PubMed DOI
Li P, Cai J, Cai M, Wu W, Li C, Lei M, et al. Distribution of Cryptosporidium species in Tibetan sheep and yaks in Qinghai, China. Vet Parasitol. 2016;215:58–62. doi: 10.1016/j.vetpar.2015.11.009. PubMed DOI