The CH-π Interaction in Protein-Carbohydrate Binding: Bioinformatics and In Vitro Quantification

. 2020 Aug 21 ; 26 (47) : 10769-10780. [epub] 20200727

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32208534

Grantová podpora
18-18964S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC17076 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015042 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015085 Ministerstvo Školství, Mládeže a Tělovýchovy
0005/01/02 Slovenská Akadémia Vied
VEGA-02/0024/16 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
02/0058/16 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
730872 Horizon 2020 Framework Programme

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.

Zobrazit více v PubMed

M. Nishio, Phys. Chem. Chem. Phys. 2011, 13, 13873-13900;

M. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss, P. Chakrabarti, Phys. Chem. Chem. Phys. 2014, 16, 12648-12683.

J. Cerny, P. Hobza, Phys. Chem. Chem. Phys. 2007, 9, 5291-5303;

M. S. Weiss, M. Brandl, J. Suhnel, D. Pal, R. Hilgenfeld, Trends Biochem. Sci. 2001, 26, 521-523.

K. L. Hudson, G. J. Bartlett, R. C. Diehl, J. Agirre, T. Gallagher, L. L. Kiessling, D. N. Woolfson, J. Am. Chem. Soc. 2015, 137, 15152-15160.

R. A. Dwek, Chem. Rev. 1996, 96, 683-720.

R. S. Haltiwanger, J. B. Lowe, Ann. Rev. Biochem. 2004, 73, 491-537.

W. B. Dreitlein, J. Maratos, J. Brocavich, Clin. Therap. 2001, 23, 327-355;

K. A. Karlsson, Ann. Rev. Biochem. 1989, 58, 309-350.

E. F. Neufeld, Ann. Rev. Biochem. 1991, 60, 257-280.

B. J. Campbell, L. G. Yu, J. M. Rhodes, Glycoconjugate J. 2001, 18, 851-858.

G. D. Brown, S. Gordon, Nature 2001, 413, 36-37;

B. A. Cobb, D. L. Kasper, Eur. J. Immunol. 2005, 35, 352-356.

R. K. Raju, A. Ramraj, M. A. Vincent, I. H. Hillier, N. A. Burton, Phys. Chem. Chem. Phys. 2008, 10, 6500-6508;

S. Tsuzuki, T. Uchimaru, M. Mikami, J. Phys. Chem. B 2009, 113, 5617-5621;

S. Tsuzuki, A. Fujii, Phys. Chem. Chem. Phys. 2008, 10, 2584-2594.

A. Bernardi, D. Arosio, D. Potenza, I. Sanchez-Medina, S. Mari, F. J. Canada, J. Jiménez-Barbero, Chem. Eur. J. 2004, 10, 4395-4406;

J. Jiménez-Barbero, F. J. Canada, G. Cuevas, J. L. Asensio, N. Aboitiz, A. Canales, M. I. Chavez, M. C. Fernandez-Alonso, A. Garcia-Herrero, S. Mari, P. Vidal, NMR Spectrosc. Comput. Model. Carbohydrates 2006, 930, 60-80;

V. Spiwok, P. Lipovova, T. Skalova, E. Buchtelova, J. Hasek, B. Kralova, Carbohydr. Res. 2004, 339, 2275-2280;

O. Takahashi, Y. Kohno, M. Nishio, Chem. Rev. 2010, 110, 6049-6076;

Z. R. Laughrey, S. E. Kiehna, A. J. Riemen, M. L. Waters, J. Am. Chem. Soc. 2008, 130, 14625-14633;

L. von Schantz, M. Hakansson, D. T. Logan, E. Nordberg-Karlsson, M. Ohlin, Proteins Struct. Funct. Bioinf. 2014, 82, 3466-3475.

M. Brandl, M. S. Weiss, A. Jabs, J. Suhnel, R. Hilgenfeld, J. Mol. Biol. 2001, 307, 357-377;

K. Manikandan, S. Ramakumar, Proteins Struct. Funct. Bioinf. 2004, 56, 768-781;

S. Scheiner, T. Kar, Y. L. Gu, J. Biol. Chem. 2001, 276, 9832-9837;

R. Sharma, J. P. McNamara, R. K. Raju, M. A. Vincent, I. H. Hillier, C. A. Morgado, Phys. Chem. Chem. Phys. 2008, 10, 2767-2774;

M. S. Sujatha, Y. U. Sasidhar, P. V. Balaj, J. Mol. Struct. Theochem. 2007, 814, 11-24.

M. D. Fernández-Alonso, F. J. Canada, J. Jimenez-Barbero, G. Cuevas, J. Am. Chem. Soc. 2005, 127, 7379-7386;

J. Jiménez-Barbero, A. Arda, F. J. Canada, C. Nativi, O. Francesconi, G. Gabrielli, A. Ienco, S. Roelens, Chem. Eur. J. 2011, 17, 4821-4829;

J. Jiménez-Barbero, F. J. Canada, J. L. Asensio, N. Aboitiz, P. Vidal, A. Canales, P. Groves, H. J. Gabius, H. C. Siebert, Adv. Carbohydr. Chem. Biochem. 2006, 60, 303-354;

K. Ramírez-Gualito, R. Alonso-Rios, B. Quiroz-Garcia, A. Rojas-Aguilar, D. Diaz, J. Jimenez-Barbero, G. Cuevas, J. Am. Chem. Soc. 2009, 131, 18129-18138;

K. Ramírez-Gualito, M. Larionova, I. Spengler, C. Nogueiras, L. Quijano, F. Cortes-Guzman, G. Cuevas, J. S. Calderon, J. Nat. Prod. 2010, 73, 1623-1627;

G. Terraneo, D. Potenza, A. Canales, J. Jimenez-Barbero, K. K. Baldridge, A. Bernardi, J. Am. Chem. Soc. 2007, 129, 2890-2900;

E. Jiménez-Moreno, G. Jimenez-Oses, A. M. Gomez, A. G. Santana, F. Corzana, A. Bastida, J. Jimenez-Barberodef, J. L. Asensio, Chem. Sci. 2015, 6, 6076-6085.

J. F. Cutfield, W. M. Patrick, Y. Nakatani, S. M. Cutfield, M. L. Sharpe, R. J. Ramsay, FEBS J. 2010, 277, 4549-4561;

M. Maresca, A. Derghal, C. Carravagna, S. Dudin, J. Fantini, Phys. Chem. Chem. Phys. 2008, 10, 2792-2800;

Z. Su, E. J. Cocinero, E. C. Stanca-Kaposta, B. G. Davis, J. P. Simons, Chem. Phys. Lett. 2009, 471, 17-21;

J. Lippe, M. Mazik, J. Org. Chem. 2015, 80, 1427-1439.

C. H. Hsu, S. Park, D. E. Mortenson, B. L. Foley, X. C. Wang, R. J. Woods, D. A. Case, E. T. Powers, C. H. Wong, H. J. Dyson, J. W. Kelly, J. Am. Chem. Soc. 2016, 138, 7636-7648;

Y. Liu, X. Zhang, W. T. Chen, Y. L. Tan, J. W. Kelly, J. Am. Chem. Soc. 2015, 137, 11303-11311.

W. I. Weis, K. Drickamer, Annu. Rev. Biochem. 1996, 65, 441-473.

W. T. Chen, S. Enck, J. L. Price, D. L. Powers, E. T. Powers, C. H. Wong, H. J. Dyson, J. W. Kelly, J. Am. Chem. Soc. 2013, 135, 9877-9884.

P. V. Balaji, M. Kumari, R. B. Sunoj, Phys. Chem. Chem. Phys. 2011, 13, 6517-6530;

M. Kumari, P. V. Balaji, R. B. Sunoj, Phys. Chem. Chem. Phys. 2011, 13, 6517-6530.

S. J. Grabowski, P. Lipkowski, J. Phys. Chem. A 2011, 115, 4765-4773;

S. Kozmon, R. Matuska, V. Spiwok, J. Koca, Chem. Eur. J. 2011, 17, 5680-5690;

R. M. Kumar, M. Elango, V. Subramanian, J. Phys. Chem. A 2010, 114, 4313-4324.

J. Houser, S. Kozmon, D. Mishra, S. K. Mishra, P. R. Romano, M. Wimmerova, J. Koca, PLoS One 2017, 12, e0189375;

M. Wimmerova, S. Kozmon, I. Necasova, S. K. Mishra, J. Komarek, J. Koca, PLoS One 2012, 7, e46032.

J. L. Asensio, T. Vacas, F. Corzana, G. Jimenez-Oses, C. Gonzalez, A. M. Gomez, A. Bastida, J. Revuelta, J. Am. Chem. Soc. 2010, 132, 12074-12090;

B. P. Klaholz, D. Moras, Structure 2002, 10, 1197-1204;

Y. Kamiya, M. Yagi-Utsumi, H. Yagi, K. Kato, Curr. Pharm. Des. 2011, 17, 1672-1684.

J. Arnaud, J. Claudinon, K. Trondle, M. Trovaslet, G. Larson, A. Thomas, A. Varrot, W. Romer, A. Imberty, A. Audfray, ACS Chem. Biol. 2013, 8, 1918-1924;

N. Kostlanova, E. P. Mitchell, H. Lortat-Jacob, S. Oscarson, M. Lahmann, N. Gilboa-Garber, G. Chambat, M. Wimmerova, A. Imberty, J. Biol. Chem. 2005, 280, 27839-27849.

M. Fujihashi, D. H. Peapus, E. Nakajima, T. Yamada, J. Saito, A. Kita, Y. Higuchi, Y. Sugawara, A. Ando, N. Kamiya, Y. Nagata, K. Miki, Acta Crystallogr. Sect. D 2003, 59, 378-380;

M. Wimmerova, E. Mitchell, J. F. Sanchez, C. Gautier, A. Imberty, J. Biol. Chem. 2003, 278, 27059-27067.

K. A. Wilson, S. D. Wetmore, Struct. Chem. 2017, 28, 1487-1500.

A. Varki, Glycobiology 2017, 27, 3-49.

M. S. Buckeridge, Biosystems 2018, 164, 112-120.

T. Satoh, T. Yamaguchi, K. Kato, Molecules 2015, 20, 2475-2491;

P. Sprovieri, G. Martino, Physiol. Res. 2018, 67, 1-11.

M. E. Taylor, K. Drickamer, Curr. Opin. Cell Biol. 2007, 19, 572-577.

M. A. Wolfert, G. J. Boons, Nat. Chem. Biol. 2013, 9, 776-784.

D. Sehnal, R. S. Varekova, L. Pravda, C. M. Ionescu, S. Geidl, V. Horsky, D. Jaiswal, M. Wimmerova, J. Koca, Nucleic Acids Res. 2015, 43, D369-D375.

J. Houser, J. Komarek, N. Kostlanova, G. Cioci, A. Varrot, S. C. Kerr, M. Lahmann, V. Balloy, J. V. Fahy, M. Chignard, A. Imberty, M. Wimmerova, PLoS One 2013, 8, e83077.

H. Makyio, J. Shimabukuro, T. Suzuki, A. Imamura, H. Ishida, M. Kiso, H. Ando, R. Kato, Biochem. Biophys. Res. Commun. 2016, 477, 477-482.

A. Audfray, J. Claudinon, S. Abounit, N. Ruvoen-Clouet, G. Larson, D. F. Smith, M. Wimmerova, J. Le Pendu, W. Romer, A. Varrot, A. Imberty, J. Biol. Chem. 2012, 287, 4335-4347.

R. Anjana, M. K. Vaishnavi, D. Sherlin, S. P. Kumar, K. Naveen, P. S. Kanth, K. Sekar, Bioinformatics 2012, 8, 1220-1224.

D. Sehnal, L. Pravda, R. S. Varekova, C. M. Ionescu, J. Koca, Nucleic Acids Res. 2015, 43, W383-W388.

J. E. J. Mills, P. M. Dean, J. Comp. Aid. Mol. Des. 1996, 10, 607-622.

W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125-132.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Acta Crystallogr. Sect. D 2011, 67, 235-242.

A. Vagin, A. Teplyakov, Acta Crystallogr. Sect. D 2010, 66, 22-25.

G. N. Murshudov, A. A. Vagin, E. J. Dodson, Acta Crystallogr. Sect. D 1997, 53, 240-255.

P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Acta Crystallogr. Sect. D 2010, 66, 486-501.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.

A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100;

J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824.

R. Ahlrichs, M. Bär, H. Baron, R. Bauernschmitt, S. Böcker, N. Crawford, P. Deglmann, M. Ehrig, K. Eichkorn, S. Elliott, F. Furche, F. Haase, M. Häser, C. Hättig, A. Hellweg, H. Horn, C. Huber, U. Huniar, M. Kattannek, A. Köhn, C. Kölmel, M. Kollowitz, K. May, P. Nava, C. Ochsenfeld, H. Öhm, H. Patzelt, D. Rappoport, O. Rubner, A. Schäfer, U. Schneider, M. Sierka, O. Treutler, B. Unterreiner, M. von Arnim, F. Weigend, P. Weis, H. Weiss, University of Karlsruhe and Forschungszentrum Karlsruhe GmbH 1989-2007, TURBOMOLE GmbH since 2007, 2015.

M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136-9148.

S. F. Boys, F. Bernardi, Mol. Phys. 2002, 100, 65-73.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...