Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32221374
PubMed Central
PMC7101380
DOI
10.1038/s41598-020-62500-2
PII: 10.1038/s41598-020-62500-2
Knihovny.cz E-resources
- MeSH
- Biocompatible Materials metabolism MeSH
- Cholestyramine Resin metabolism MeSH
- Membrane Fluidity * MeSH
- Fluorescence Polarization MeSH
- Lab-On-A-Chip Devices MeSH
- Liposomes chemical synthesis MeSH
- Microfluidics instrumentation methods MeSH
- Nanostructures * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Cholestyramine Resin MeSH
- Liposomes MeSH
Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with "herring-bone" geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
Institute of Physics Czech Academy of Sciences Na Slovance 2 Prague 8 Czechia
See more in PubMed
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23:3319–3329. doi: 10.1080/10717544.2016.1177136. PubMed DOI
Belfiore L, et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. release. 2018;277:1–13. doi: 10.1016/j.jconrel.2018.02.040. PubMed DOI
Perrett S, Golding M, Williams WP. A Simple Method for the Preparation of Liposomes for Pharmaceutical Applications: Characterization of the Liposomes. J. Pharm. Pharmacol. 1991;43:154–161. doi: 10.1111/j.2042-7158.1991.tb06657.x. PubMed DOI
Pons M, Foradada M, Estelrich J. Liposomes obtained by the ethanol injection method. Int. J. Pharm. 1993;95:51–56. doi: 10.1016/0378-5173(93)90389-W. DOI
Turanek J, et al. Linkup of a fast protein liquid chromatography system with a stirred thermostated cell for sterile preparation of liposomes by the proliposome-liposome method: Application to encapsulation of antibiotics, synthetic peptide immunomodulators, and a photosen. Anal. Biochem. 1997;249:131–139. doi: 10.1006/abio.1997.2146. PubMed DOI
Bartheldyová E, et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressi. Bioconjug. Chem. 2018;29:2343–2356. doi: 10.1021/acs.bioconjchem.8b00311. PubMed DOI
Capretto L, Carugo D, Mazzitelli S, Nastruzzi C, Zhang X. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications. Adv. Drug Deliv. Rev. 2013;65:1496–1532. doi: 10.1016/j.addr.2013.08.002. PubMed DOI
Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep. 2016;6:25876. doi: 10.1038/srep25876. PubMed DOI PMC
Wang X, et al. Synthesis of Biomaterials Utilizing Microfluidic Technology. Genes (Basel). 2018;9:283. doi: 10.3390/genes9060283. PubMed DOI PMC
Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv. Drug Deliv. Rev. 2018;128:84–100. doi: 10.1016/j.addr.2018.03.008. PubMed DOI
Maeki M, et al. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. PLoS One. 2017;12:e0187962. doi: 10.1371/journal.pone.0187962. PubMed DOI PMC
Campelo F, Arnarez C, Marrink SJ, Kozlov MM. Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 2014;208:25–33. doi: 10.1016/j.cis.2014.01.018. PubMed DOI
Guida V. Thermodynamics and kinetics of vesicles formation processes. Adv. Colloid Interface Sci. 2010;161:77–88. doi: 10.1016/j.cis.2009.11.004. PubMed DOI
Patil YP, Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids. 2014;177:8–18. doi: 10.1016/j.chemphyslip.2013.10.011. PubMed DOI
Quinn D, et al. Formation and size distribution of self-assembled vesicles. Proc. Natl. Acad. Sci. 2017;114:2910–2915. doi: 10.1073/pnas.1702065114. PubMed DOI PMC
Hood RR, Vreeland WN, DeVoe DL. Microfluidic remote loading for rapid single-step liposomal drug preparation. Lab Chip. 2014;14:3359. doi: 10.1039/C4LC00390J. PubMed DOI PMC
Dimov N, Kastner E, Hussain M, Perrie Y, Szita N. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-11533-1. PubMed DOI PMC
Stroock AD, et al. Chaotic Mixer for Microchannels. Science (80-.). 2002;295:647–651. doi: 10.1126/science.1066238. PubMed DOI
Jahn A, et al. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano. 2010;4:2077–2087. doi: 10.1021/nn901676x. PubMed DOI
do Canto AMTM, et al. Diphenylhexatriene membrane probes DPH and TMA-DPH: A comparative molecular dynamics simulation study. Biochim. Biophys. Acta - Biomembr. 2016;1858:2647–2661. doi: 10.1016/j.bbamem.2016.07.013. PubMed DOI
Venetië R, Leunissen-Bijvelt J, Verkleij AJ, Ververgaert PHJT. Size determination of sonicated vesicles by freeze-fracture electron microscopy, using the spray-freezing method. J. Microsc. 1980;118:401–408. doi: 10.1111/j.1365-2818.1980.tb00289.x. DOI
Maulucci G, et al. Particle Size Distribution in DMPC Vesicles Solutions Undergoing Different Sonication Times. Biophys. J. 2005;88:3545–3550. doi: 10.1529/biophysj.104.048876. PubMed DOI PMC
Koudelka S, et al. Liposomal nanocarriers for plasminogen activators. J. Control. Release. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI
Busquets, M. A., Estelrich, J. & Sánchez-Martín, M. J. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int. J. Nanomedicine 1727, 10.2147/IJN.S76501 (2015). PubMed PMC
Lux J, Sherry AD. Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr. Opin. Chem. Biol. 2018;45:121–130. doi: 10.1016/j.cbpa.2018.04.006. PubMed DOI PMC
Lasic DD. Mechanisms of Liposome Formation. J. Liposome Res. 1995;5:431–441. doi: 10.3109/08982109509010233. DOI
Schubert, R. Liposome Preparation by Detergent Removal. In 46–70, 10.1016/S0076-6879(03)67005-9 (2003). PubMed
Mašek J, et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal. Biochem. 2011;408:95–104. doi: 10.1016/j.ab.2010.08.023. PubMed DOI
Hu M, Briguglio JJ, Deserno M. Determining the Gaussian Curvature Modulus of Lipid Membranes in Simulations. Biophys. J. 2012;102:1403–1410. doi: 10.1016/j.bpj.2012.02.013. PubMed DOI PMC
Jovanović AA, et al. Comparative Effects of Cholesterol and β-Sitosterol on the Liposome Membrane Characteristics. Eur. J. Lipid Sci. Technol. 2018;120:1800039. doi: 10.1002/ejlt.201800039. DOI
Macdonald AG, Wahle KWJ, Cossins AR, Behan MK. Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes. BBA - Biomembr. 1988;938:231–242. doi: 10.1016/0005-2736(88)90162-9. PubMed DOI
Fekete L, Kůsová K, Petrák V, Kratochvílová I. AFM topographies of densely packed nanoparticles: a quick way to determine the lateral size distribution by autocorrelation function analysis. J. Nanoparticle Res. 2012;14(1):1062. doi: 10.1007/s11051-012-1062-7. DOI
Marsh, D. Handbook of Lipid Bilayers. (Boca Raton, FL.: CRC Press, Taylor & Francis Group, 2013).