Thrombus Imaging Using 3D Printed Middle Cerebral Artery Model and Preclinical Imaging Techniques: Application to Thrombus Targeting and Thrombolytic Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-30299A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_025/0007397
Ministerstvo Školství, Mládeže a Tělovýchovy
318/2019/FaF
IGA VFU
RO0518
Ministerstvo Zemědělství
86652036
Institutional Research Concept RVO
PubMed
33322710
PubMed Central
PMC7763938
DOI
10.3390/pharmaceutics12121207
PII: pharmaceutics12121207
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, MCAO, MRI, fibrin targeting, fluorescence imaging, microCT, rtPA, thrombolysis, thrombus imaging,
- Publikační typ
- časopisecké články MeSH
Diseases with the highest burden for society such as stroke, myocardial infarction, pulmonary embolism, and others are due to blood clots. Preclinical and clinical techniques to study blood clots are important tools for translational research of new diagnostic and therapeutic modalities that target blood clots. In this study, we employed a three-dimensional (3D) printed middle cerebral artery model to image clots under flow conditions using preclinical imaging techniques including fluorescent whole-body imaging, magnetic resonance imaging (MRI), and computed X-ray microtomography (microCT). Both liposome-based, fibrin-targeted, and non-targeted contrast agents were proven to provide a sufficient signal for clot imaging within the model under flow conditions. The application of the model for clot targeting studies and thrombolytic studies using preclinical imaging techniques is shown here. For the first time, a novel method of thrombus labeling utilizing barium sulphate (Micropaque®) is presented here as an example of successfully employed contrast agents for in vitro experiments evaluating the time-course of thrombolysis and thus the efficacy of a thrombolytic drug, recombinant tissue plasminogen activator (rtPA). Finally, the proof-of-concept of in vivo clot imaging in a middle cerebral artery occlusion (MCAO) rat model using barium sulphate-labelled clots is presented, confirming the great potential of such an approach to make experiments comparable between in vitro and in vivo models, finally leading to a reduction in animals needed.
Zobrazit více v PubMed
Townsend N., Wilson L., Bhatnagar P., Wickramasinghe K., Rayner M., Nichols M. Cardiovascular disease in Europe: Epidemiological update. Eur. Heart J. 2016;37:3232–3245. doi: 10.1093/eurheartj/ehw334. PubMed DOI
Roger V.L. Epidemiology of myocardial infarction. Med. Clin. N. Am. 2007;91:537–552. doi: 10.1016/j.mcna.2007.03.007. PubMed DOI PMC
Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O., Bambakidis N.C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B., et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018;49:e46–e110. doi: 10.1161/STR.0000000000000158. PubMed DOI
Kraft P., Meyer S.F.D., Kleinschnitz C. Next-Generation Antithrombotics in Ischemic Stroke: Preclinical Perspective on ‘Bleeding-Free Antithrombosis’. J. Cereb. Blood Flow Metab. 2012;32:1831–1840. doi: 10.1038/jcbfm.2012.108. PubMed DOI PMC
Kang K., Oh S., Yi H., Han S., Hwang Y. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics. 2018;12:014105. doi: 10.1063/1.5012548. PubMed DOI PMC
Hodge R.D., Bakken T.E., Miller J.A., Smith M.D., Barkan E.R., Graybuck L.T., Close J.L., Long B., Johansen N., Penn O., et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573:61–68. doi: 10.1038/s41586-019-1506-7. PubMed DOI PMC
Smith A.G., Rowland Hill C. Imaging assessment of acute ischaemic stroke: A review of radiological methods. Br. J. Radiol. 2017;91:20170573. doi: 10.1259/bjr.20170573. PubMed DOI PMC
Ciesienski K.L., Caravan P. Molecular MRI of Thrombosis. Curr. Cardiovasc. Imaging Rep. 2011;4:77–84. doi: 10.1007/s12410-010-9061-5. PubMed DOI PMC
Kim J., Park J.E., Nahrendorf M., Kim D.-E. Direct Thrombus Imaging in Stroke. J. Stroke. 2016;18:286–296. doi: 10.5853/jos.2016.00906. PubMed DOI PMC
Koudelka S., Mikulik R., Mašek J., Raška M., Knotigová P.T., Miller A.D., Turánek J. Liposomal nanocarriers for plasminogen activators. J. Control. Release. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI
Hosokawa K., Ohnishi-Wada T., Sameshima-Kaneko H., Nagasato T., Miura N., Kikuchi K., Koide T., Maruyama I., Urano T. Plasminogen activator inhibitor type 1 in platelets induces thrombogenicity by increasing thrombolysis resistance under shear stress in an in-vitro flow chamber model. Thromb. Res. 2016;146:69–75. doi: 10.1016/j.thromres.2016.09.002. PubMed DOI
Janis A.D., Buckley L.A., Nyara A.N., Prahl S.A., Gregory K. A reconstituted in vitro clot model for evaluating laser thrombolysis. J. Thromb. Thrombolysis. 2002;13:167–175. doi: 10.1023/A:1020431007864. PubMed DOI
Ouriel K., Welch E.L., Shortell C.K., Geary K., Fiore W.M., Cimino C. Comparison of streptokinase, urokinase, and recombinant tissue plasminogen activator in an in vitro model of venous thrombolysis. J. Vasc. Surg. 1995;22:593–597. doi: 10.1016/S0741-5214(95)70045-5. PubMed DOI
Roessler F.C., Ohlrich M., Marxsen J.H., Schmieger M., Weber P.-K., Stellmacher F., Trillenberg P., Eggers J., Seidel G. Introduction of a new model for time-continuous and non-contact investigations of in-vitro thrombolysis under physiological flow conditions. BMC Neurol. 2011;11:58. doi: 10.1186/1471-2377-11-58. PubMed DOI PMC
Stroughton J., Ouriel K., Shortell C.K., Cho J.S., Marder V.J. Plasminogen acceleration of urokinase thrombolysis. J. Vasc. Surg. 1994;19:298–303. doi: 10.1016/S0741-5214(94)70105-9. PubMed DOI
Wang S.-S., Chou N.-K., Chung T.-W. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: An in vitro thrombolysis study. J. Biomed. Mater. Res. Part A. 2009;91:753–761. doi: 10.1002/jbm.a.32234. PubMed DOI
Fahy P., Malone F., McCarthy E., McCarthy P., Thornton J., Brennan P., O’Hare A., Looby S., Sultan S., Hynes N., et al. An In Vitro Evaluation of Emboli Trajectories within a Three-Dimensional Physical Model of the Circle of Willis under Cerebral Blood Flow Conditions. Ann. Biomed. Eng. 2015;43:2265–2278. doi: 10.1007/s10439-015-1250-6. PubMed DOI
Yohannes F.G., Hoffmann A.K. Non-invasive low frequency vibration as a potential emergency adjunctive treatment for heart attack and stroke. An in vitro flow model. J. Thromb. Thrombolysis. 2008;25:251–258. doi: 10.1007/s11239-007-0054-4. PubMed DOI
Mašek J., Bartheldyová E., Turánek-Knotigová P., Škrabalová M., Korvasová Z., Plocková J., Koudelka S., Škodová P., Kulich P., Krupka M., et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: Preparation, structural study and immune response towards rHsp90. J. Control. Release. 2011;151:193–201. doi: 10.1016/j.jconrel.2011.01.016. PubMed DOI
Mašek J., Bartheldyová E., Korvasová Z., Škrabalová M., Koudelka S., Kulich P., Kratochvílová I., Miller A.D., Ledvina M., Raška M., et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal. Biochem. 2011;408:95–104. doi: 10.1016/j.ab.2010.08.023. PubMed DOI
Overgaard K., Sereghy T., Boysen G., Pedersen H., Høyer S., Diemer N.H. A rat model of reproducible cerebral infarction using thrombotic blood clot emboli. J. Cereb. Blood Flow Metab. 1992;12:484–490. doi: 10.1038/jcbfm.1992.66. PubMed DOI
Chameettachal S., Pati F. 6–3D printed in vitro disease models. In: Kalaskar D.M., editor. 3D Printing in Medicine. Woodhead Publishing; Sawston, UK: 2017. pp. 115–138. DOI
Kaneko N., Mashiko T., Ohnishi T., Ohta M., Namba K., Watanabe E., Kawai K. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method. Sci. Rep. 2016;6:39168. doi: 10.1038/srep39168. PubMed DOI PMC
Nagassa R.G., McMenamin P.G., Adams J.W., Quayle M.R., Rosenfeld J.V. Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print. Med. 2019;5:11. doi: 10.1186/s41205-019-0048-9. PubMed DOI PMC
De Long W.B. Anatomy of the middle cerebral artery: The temporal branches. Stroke. 1973;4:412–418. doi: 10.1161/01.STR.4.3.412. PubMed DOI
Elnager A., Abdullah W.Z., Hassan R., Idris Z., Arfah N.W., Sulaiman S.A., Mustafa Z. In Vitro Whole Blood Clot Lysis for Fibrinolytic Activity Study Using D-Dimer and Confocal Microscopy. Adv. Hematol. 2014;2014:814684. doi: 10.1155/2014/814684. PubMed DOI PMC
Leenaerts D., Loyau S., Mertens J.C., Boisseau W., Michel J.B., Lambeir A.M., Jandrot-Perrus M., Hendriks D. Carboxypeptidase U (CPU, carboxypeptidase B2, activated thrombin-activatable fibrinolysis inhibitor) inhibition stimulates the fibrinolytic rate in different in vitro models. J. Thromb. Haemost. JTH. 2018;16:2057–2069. doi: 10.1111/jth.14249. PubMed DOI
Meunier J.M., Wenker E., Lindsell C.J., Shaw G.J. Individual lytic efficacy of recombinant tissue plasminogen activator in an in vitro human clot model: Rate of “nonresponse”. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2013;20:449–455. doi: 10.1111/acem.12133. PubMed DOI PMC
Walvick R.P., Bratane B.T., Henninger N., Sicard K.M., Bouley J., Yu Z., Lo E., Wang X., Fisher M. Visualization of clot lysis in a rat embolic stroke model: Application to comparative lytic efficacy. Stroke. 2011;42:1110–1115. doi: 10.1161/STROKEAHA.110.602102. PubMed DOI PMC
Schellinger P.D., Fiebach J.B., Hacke W. Imaging-based decision making in thrombolytic therapy for ischemic stroke: Present status. Stroke. 2003;34:575–583. doi: 10.1161/01.STR.0000051504.10095.9C. PubMed DOI
Petroková H., Mašek J., Kuchař M., Wünschová A.V., Štikarová J., Bartheldyová E., Kulich P., Hubatka F., Kotouček J., Knotigová P.T., et al. Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders. Pharmaceutics. 2019;11:642. doi: 10.3390/pharmaceutics11120642. PubMed DOI PMC
Spero R.C., Sircar R.K., Schubert R., Taylor R.M., Wolberg A.S., Superfine R. Nanoparticle Diffusion Measures Bulk Clot Permeability. Biophys. J. 2011;101:943–950. doi: 10.1016/j.bpj.2011.06.052. PubMed DOI PMC
Benson J.C., Fitzgerald S.T., Kadirvel R., Johnson C., Dai D., Karen D., Kallmes D.F., Brinjikji W. Clot permeability and histopathology: Is a clot’s perviousness on CT imaging correlated with its histologic composition? J. Neurointerv. Surg. 2020;12:38–42. doi: 10.1136/neurintsurg-2019-014979. PubMed DOI PMC
Botnar R.M., Perez A.S., Witte S., Wiethoff A.J., Laredo J., Hamilton J., Quist W., Parsons E.C., Vaidya A., Kolodziej A., et al. In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent. Circulation. 2004;109:2023–2029. doi: 10.1161/01.CIR.0000127034.50006.C0. PubMed DOI PMC
Sirol M., Fuster V., Badimon J.J., Fallon J.T., Toussaint J.-F., Fayad Z.A. Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation. 2005;112:1594–1600. doi: 10.1161/CIRCULATIONAHA.104.522110. PubMed DOI
Kotouček J., Hubatka F., Mašek J., Kulich P., Velínská K., Bezděková J., Fojtíková M., Bartheldyová E., Tomečková A., Stráská J., et al. Preparation of nanoliposomes by microfluidic mixing in herring-bone channel and the role of membrane fluidity in liposomes formation. Sci. Rep. 2020;10:5595. doi: 10.1038/s41598-020-62500-2. PubMed DOI PMC
Korninger C., Collen D. Studies on the Specific Fibrinolytic Effect of Human Extrinsic (Tissue-Type) Plasminogen Activator in Human Blood and in Various Animal Species in Vitro. Thromb. Haemost. 1981;46:561–565. doi: 10.1055/s-0038-1653411. PubMed DOI
Tomkins A.J., Hood R.J., Levi C.R., Spratt N.J. Tissue Plasminogen Activator for preclinical stroke research: Neither “rat” nor “human” dose mimics clinical recanalization in a carotid occlusion model. Sci. Rep. 2015;5:16026. doi: 10.1038/srep16026. PubMed DOI PMC