• This record comes from PubMed

Volatility Study of Amino Acids by Knudsen Effusion with QCM Mass Loss Detection

. 2020 May 05 ; 21 (9) : 938-951. [epub] 20200331

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
LTAUSA18011 Ministry of Education, Youth and Sports of the Czech Republic - International
Fundação para a Ciência e Tecnologia - International
European Social Fund - International
UID/QUI/0081/2020 University of Porto - International

This work presents a new Knudsen effusion apparatus employing continuous monitoring of sample deposition using a quartz-crystal microbalance sensor with internal calibration by gravimetric determination of the sample mass loss. The apparatus was tested with anthracene and 1,3,5-triphenylbenzene and subsequently used for the study of sublimation behavior of several proteinogenic amino acids. Their low volatility and thermal instability strongly limit possibilities of studying their sublimation behavior and available literature data. The results presented in this work are unique in their temperature range and low uncertainty required for benchmarking theoretical studies of sublimation behavior of molecular crystals. The possibility of dimerization in the gas phase that would invalidate the effusion experiments is addressed and disproved by theoretical calculations. The enthalpy of sublimation of each amino acid is analyzed based on the contributions in two hypothetical sublimation paths involving the proton transfer in the solid and in the gas phase.

See more in PubMed

M. A. V. Ribeiro da Silva, M. J. S. Monte, L. M. N. B. F. Santos, J. Chem. Thermodyn. 2006, 38, 778-787.

J. M. S. Fonseca, O. Pfohl, R. Dohrn, J. Chem. Thermodyn. 2011, 43, 1942-1949.

C. G. de Kruif, C. H. D. van Ginkel, J. Chem. Thermodyn. 1977, 9, 725-730.

R. Kendler, F. Dreisbach, R. Seif, S. Pollak, M. Petermann, Rev. Sci. Instrum. 2019, 90, 055105/055101.

A. Freedman, P. L. Kebabian, Z. Li, W. A. Robinson, J. C. Wormhoudt, Meas. Sci. Technol. 2008, 19, 125102.

V. V. Tyunina, A. V. Krasnov, E. Y. Tyunina, V. G. Badelin, G. V. Girichev, J. Chem. Thermodyn. 2014, 74, 221-226.

L. M. N. B. F. Santos, L. M. S. S. Lima, C. F. R. A. C. Lima, F. D. Magalhães, M. C. Torres, B. Schröder, M. A. V. Ribeiro da Silva, J. Chem. Thermodyn. 2011, 43, 834-843.

L. M. N. B. F. Santos, A. I. M. C. Lobo Ferreira, V. Štejfa, A. S. M. C. Rodrigues, M. A. A. Rocha, M. C. Torres, F. M. S. Tavares, F. S. Carpinteiro, J. Chem. Thermodyn. 2018, 126, 171-186.

T. Mahnel, V. Štejfa, M. Maryška, M. Fulem, K. Růžička, J. Chem. Thermodyn. 2019, 129, 61-72.

S. Takagi, H. Chihara, S. Seki, Bull. Chem. Soc. Jpn. 1959, 32, 84-88.

H. J. Svec, D. D. Clyde, J. Chem. Eng. Data. 1965, 10, 151-152.

C. G. de Kruif, J. Voogd, J. C. A. Offringa, J. Chem. Thermodyn. 1979, 11, 651-656.

L. M. N. B. F. Santos, A. I. M. C. L. Ferreira, V. Štejfa, A. S. M. C. Rodrigues, M. A. A. Rocha, M. C. Torres, F. M. S. Tavares, F. S. Carpinteiro, J. Chem. Thermodyn. 2018, 126, 171-186.

D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood, Z. Zhang, Metrologia. 2018, 55, L13-L16.

R. Sabbah, A. Xu-wu, J. S. Chickos, M. L. P. Leitão, M. V. Roux, L. A. Torres, Thermochim. Acta. 1999, 331, 93-204.

H. Hoyer, W. Peperle, Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 1958, 62, 61-66.

N. Wakayama, H. Inokuchi, Bull. Chem. Soc. Jpn. 1967, 40, 2267-2271.

L. Malaspina, G. Bardi, R. Gigli, J. Chem. Thermodyn. 1974, 6, 1053-1064.

S. P. Verevkin, J. Chem. Thermodyn. 1997, 29, 1495-1501.

C. H. D. Calis-Van Ginkel, G. H. M. Calis, C. W. M. Timmermans, C. G. de Kruif, H. A. J. Oonk, J. Chem. Thermodyn. 1978, 10, 1083-1088.

R. D. Suenram, F. J. Lovas, J. Am. Chem. Soc. 1980, 102, 7180-7184.

I. D. Reva, A. M. Plokhotnichenko, S. G. Stepanian, A. Y. Ivanov, E. D. Radchenko, G. G. Sheina, Y. P. Blagoi, Chem. Phys. Lett. 1995, 232, 141-148.

R. M. Balabin, Phys. Chem. Chem. Phys. 2012, 14, 99-103.

S. G. Stepanian, I. D. Reva, E. D. Radchenko, M. T. S. Rosado, M. L. T. S. Duarte, R. Fausto, L. Adamowicz, J. Phys. Chem. A. 1998, 102, 1041-1054.

G. Bazsó, G. Magyarfalvi, G. Tarczay, J. Mol. Struct. 2012, 1025, 33-42.

P. D. Godfrey, S. Firth, L. D. Hatherley, R. D. Brown, A. P. Pierlot, J. Am. Chem. Soc. 1993, 115, 9687-9691.

S. Blanco, A. Lesarri, J. C. López, J. L. Alonso, J. Am. Chem. Soc. 2004, 126, 11675-11683.

R. M. Balabin, Phys. Chem. Chem. Phys. 2010, 12, 5980-5982.

S. G. Stepanian, I. D. Reva, E. D. Radchenko, L. Adamowicz, J. Phys. Chem. A. 1998, 102, 4623-4629.

B. Lambie, R. Ramaekers, G. Maes, Spectrochim. Acta Part A 2003, 59, 1387-1397.

S. G. Stepanian, I. D. Reva, E. D. Radchenko, L. Adamowicz, J. Phys. Chem. A. 1999, 103, 4404-4412.

F. Huisken, O. Werhahn, A. Y. Ivanov, S. A. Krasnokutski, J. Chem. Phys. 1999, 111, 2978-2984.

J. Chocholoušová, J. Vacek, F. Huisken, O. Werhahn, P. Hobza, J. Phys. Chem. A. 2002, 106, 11540-11549.

P. Friant-Michel, M. F. Ruiz-López, ChemPhysChem. 2010, 11, 3499-3504.

R. M. Balabin, Chem. Phys. Lett. 2009, 479, 195-200.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M. Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

V. Štejfa, M. Fulem, K. Růžička, J. Chem. Phys. 2019, 151, 144504.

V. Štejfa, M. Fulem, K. Růžička, J. Chem. Phys. 2019, 150, 224101.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

A. F. L. O. M. Santos, R. Notario, M. A. V. Ribeiro da Silva, J. Phys. Chem. B. 2014, 118, 10130-10141.

A. Grunenberg, D. Bougeard, B. Schrader, Thermochim. Acta. 1984, 77, 59-66.

M. V. Roux, R. Notario, M. Segura, J. S. Chickos, J. F. Liebman, J. Phys. Org. Chem. 2012, 25, 916-924.

C. H. Görbitz, P. Karen, M. Dušek, V. Petříček, IUCrJ. 2016, 3, 341-353.

R. Sabbah, M. Laffitte, Bull. Soc. Chim. Fr. 1978, 50-52.

A. Lähde, J. Raula, J. Malm, E. I. Kauppinen, M. Karppinen, Thermochim. Acta. 2009, 482, 17-20.

R. Sabbah, C. Minadakis, Thermochim. Acta. 1981, 43, 269-277.

V. V. Tyunina, A. V. Krasnov, E. Y. Tyunina, V. G. Badelin, V. V. Rybkin, J. Chem. Thermodyn. 2019, 135, 287-295.

V. V. Tyunina, A. V. Krasnov, V. G. Badelin, G. V. Girichev, J. Chem. Thermodyn. 2016, 98, 62-70.

V. Pokorný, C. Červinka, V. Štejfa, J. Havlín, K. Růžička, M. Fulem, J. Chem. Eng. Data. 2020, DOI: 10.1021/acs.jced.1029b01086.

E. C. W. Clarke, D. N. Glew, Trans. Faraday Soc. 1966, 62, 539-547.

V. G. Badelin, E. Y. Tyunina, G. V. Girichev, N. I. Giricheva, O. V. Pelipets, J. Struct. Chem. 2007, 48, 647-653.

C. Červinka, M. Fulem, Phys. Chem. Chem. Phys. 2019, 21, 18501-18515.

O. V. Dorofeeva, O. N. Ryzhova, J. Phys. Chem. A. 2014, 118, 3490-3502.

E. V. Sagadeev, A. A. Gimadeev, V. P. Barabanov, Russ. J. Phys. Chem. A. 2010, 84, 209-214.

J. C. S. Costa, A. Mendes, L. M. N. B. F. Santos, J. Chem. Eng. Data. 2018, 63, 1-20.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...