Composite Hemostatic Nonwoven Textiles Based on Hyaluronic Acid, Cellulose, and Etamsylate

. 2020 Apr 01 ; 13 (7) : . [epub] 20200401

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244805

Grantová podpora
322/2016/FaF Veterinární a Farmaceutická Univerzita Brno

The achievement of rapid hemostasis represents a long-term trend in hemostatic research. Specifically, composite materials are now the focus of attention, based on the given issues and required properties. In urology, different materials are used to achieve fast and effective hemostasis. Additionally, it is desirable to exert a positive influence on local tissue reaction. In this study, three nonwoven textiles prepared by a wet spinning method and based on a combination of hyaluronic acid with either oxidized cellulose or carboxymethyl cellulose, along with the addition of etamsylate, were introduced and assessed in vivo using the rat partial nephrectomy model. A significantly shorter time to hemostasis in seconds (p < 0.05), was attributed to the effect of the carboxymethyl cellulose material. The addition of etamsylate did not noticeably contribute to further hemostasis, but its application strengthened the structure and therefore significantly improved the effect on local changes, while also facilitating any manipulation by the surgeons. Specifically, the hyaluronic acid supported the tissue healing and regeneration, and ensured the favorable results of the histological analysis. Moreover, the prepared textiles proved their bioresorbability after a three-day period. In brief, the fabrics yielded favorable hemostatic activity, bioresorbability, non-irritability, and had a beneficial effect on the tissue repair.

Zobrazit více v PubMed

Stassen J.M., Arnout J., Deckmyn H. The hemostatic system. Curr. Med. Chem. 2004;11:2245–2260. doi: 10.2174/0929867043364603. PubMed DOI

Lattouf J.B., Beri A., Klinger C.H., Jeschke S., Janetschek G. Practical hints for hemostasis in laparoscopic surgery. Minim. Invasive Ther. Allied Technol. 2007;16:45–51. doi: 10.1080/13645700601157984. PubMed DOI

Tan S.R., Tope W.D. Effectiveness of microporous polysaccharide hemospheres for achieving hemostasis in mohs micrographic surgery. Dermatol. Surg. 2004;30:908–914. doi: 10.1111/j.1524-4725.2004.30261.x. PubMed DOI

Recinos G., Inaba K., Dubose J., Demetriades D., Rhee P. Local and systemic hemostatics in trauma: A review. Ulus. Travma Acil Cerrahi Derg. 2008;14:175–181. PubMed

Achneck H.E., Sileshi B., Jamiolkowski R.M., Albala D.M., Shapiro M.L., Lawson J.H. A comprehensive review of topical hemostatic agents: Efficacy and recommendations for use. Ann. Surg. 2010;251:217–228. doi: 10.1097/SLA.0b013e3181c3bcca. PubMed DOI

Schonauer C., Tessitore E., Barbagallo G., Albanese V., Moraci A. The use of local agents: Bone wax, gelatin, collagen, oxidized cellulose. Eur. Spine J. 2004;13:89–96. doi: 10.1007/s00586-004-0727-z. PubMed DOI PMC

Panwar V., Thomas J., Sharma A., Chopra V., Kaushik S. In-vitro and in-vivo evaluation of modified sodium starch glycolate for exploring its haemostatic potential. Carbohydr. Polym. 2020;235:115975. doi: 10.1016/j.carbpol.2020.115975. PubMed DOI

Cassano R., Di Gioia M.L., Mellace S., Picci N., Trombino S. Hemostatic gauze based on chitosan and hydroquinone: Preparation, characterization and blood coagulation evaluation. J. Mater. Sci. Mater. Med. 2017;28:190. doi: 10.1007/s10856-017-6000-x. PubMed DOI

LV F., Cong X., Tang W., Han Y., Tang Y., Liu Y., Su L., Liu M., Jin M., Yi Z. Novel hemostatic agents based on gelatin-microbial transglutaminase mix. Sci. China Life Sci. 2017;60:397–403. doi: 10.1007/s11427-015-9019-x. PubMed DOI

Fathi P., Sikorski M., Christodoulides K., Langan K., Choi Y.S., Titcomb M., Ghodasara A., Wonodi O., Thaker H., Vural M., et al. Zeolite-loaded alginate-chitosan hydrogel beads as a topical hemostat. J. Biomed. Mater. Res. Part B. 2018;106B:1662–1671. doi: 10.1002/jbm.b.33969. PubMed DOI PMC

Song B., Yang L., Han L., Jia L. Metal Ion-Chelated Tannic Acid Coating for Hemostatic Dressing. Materials (Basel) 2019;12:1803. doi: 10.3390/ma12111803. PubMed DOI PMC

Aydemir Sezer U., Kocer Z., Sahin I., Aru B., Demirel G.Y. Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydr. Polym. 2018;200:624–632. doi: 10.1016/j.carbpol.2018.07.074. PubMed DOI

Sukul M., Ventura R.D., Bae S.H., Choi H.J., Lee S.Y., Lee B.T. Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater. Lett. 2017;197:150–155. doi: 10.1016/j.matlet.2017.03.102. DOI

Slezak P., Keibel C., Labahn D., Schmidbauer A., Genyk Y., Gulle H. A Comparative Efficacy of Recombinant Topical Thrombin (RECOTHROM®) with a Gelatin Sponge Carrier Versus Topical Oxidized Regenerated Cellulose (TABOTAMP®/SURGICEL®) in a Porcine Liver Bleeding Model. J. Investig. Surg. 2020:1–7. doi: 10.1080/08941939.2019.1705444. PubMed DOI

Salwowska N.M., Bebenek K.A., Żądło D.A., Wcisło-Dziadecka D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J. Cosmet. Dermatol. 2016;15:520–526. doi: 10.1111/jocd.12237. PubMed DOI

Neuman M.G., Nanau R.M., Oruña-Sanchez L., Coto G. Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 2015;18:53–60. doi: 10.18433/J3K89D. PubMed DOI

Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI

Nyman E., Huss F., Nyman T., Junker J., Kratz G. Hyaluronic acid, an important factor in the wound healing properties of amniotic fluid: In vitro studies of re-epithelialisation in human skin wounds. J. Plast. Surg. Hand Surg. 2013;47:89–92. doi: 10.3109/2000656X.2012.733169. PubMed DOI

Møller L., Devantier K., Wulff T., Sabra M.C. Haemostatic Composition Comprising Hyaluronic Acid. EP1786480A1. 2007 May 23;

Waring M.J., Parsons D. Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials. 2001;22:903–912. doi: 10.1016/S0142-9612(00)00254-4. PubMed DOI

Ohta S., Nishiyama T., Sakoda M., Machioka K., Fuke M., Ichimura S., Inagaki F., Shimizu A., Hasegawa K., Kokudo N., et al. Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. J. Biosci. Bioeng. 2015;119:718–723. doi: 10.1016/j.jbiosc.2014.10.026. PubMed DOI

Aoshima M., Tanabe K., Kohno I., Jo Y., Takahashi K., Sugo T., Matsuda M. Hemostatic mechanisms of a soluble fraction of plant-derived sodium carboxymethyl cellulose. Jpn. J. Thromb. Hemost. 2012;23:387–398. doi: 10.2491/jjsth.23.387. DOI

Shimizu A., Hasegawa K., Masuda K., Omichi K., Miyata A., Kokudo N. Efficacy of hyaluronic acid/carboxymethyl cellulose-based bioresorbable membranes in reducing perihepatic adhesion formation: A prospective cohort study. Dig. Surg. 2018;35:95–103. doi: 10.1159/000472883. PubMed DOI

Lewis K.M., Spazierer D., Urban M.D., Lin L., Redl H., Goppelt A. Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur. Surg. 2013;45:213–220. doi: 10.1007/s10353-013-0222-z. PubMed DOI PMC

Spangler D., Rothenburger S., Nguyen K., Jampani H., Weiss S., Bhende S. In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 2003;4:255–262. doi: 10.1089/109629603322419599. PubMed DOI

Zhang Y., Liu Q., Yang N., Zhang X. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models. Drug Des. Dev. Ther. 2016;25:3501–3507. doi: 10.2147/DDDT.S103824. PubMed DOI PMC

Alvarez-Guerra M., Hernandez M.R., Escolar G., Chiavaroli C., Garay R.P., Hannaert P. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells. Thromb. Res. 2002;107:329–335. doi: 10.1016/S0049-3848(02)00353-5. PubMed DOI

Garay R.P., Ciavaroli C., Hannaert P. Therapeutic efficacy and mechanism of action of ethamsylate, a long-standing hemostatic agent. Am. J. Ther. 2006;13:236–247. doi: 10.1097/01.mjt.0000158336.62740.54. PubMed DOI

San Antonio J. Collagen and Alginate-based Formulations for Hemostasis. US20140271610A1. 2014 Sep 18;

Seon G.M., Lee M.H., Kwon B.J., Kim M.S., Koo M.A., Kim D., Seomun Y., Kim J.T., Park J.C. Functional improvement of hemostatic dressing by addition of recombinant batroxobin. Acta Biomater. 2017;48:175–185. doi: 10.1016/j.actbio.2016.10.024. PubMed DOI

Behrens A.M., Sikorski M.J., Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A. 2014;102:4182–4194. doi: 10.1002/jbm.a.35052. PubMed DOI PMC

Samudrala S. Topical Hemostatic Agents in Surgery: A Surgeon’s Perspective. AORN J. 2008;88:s2–s11. doi: 10.1016/S0001-2092(08)00586-3. PubMed DOI

Jin J., Ji Z., Xu M., Liu C., Ye X., Zhang W., Li S., Wang D., Zhang W., Chen J., et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo. ACS Biomater. Sci. Eng. 2018;4:2541–2551. doi: 10.1021/acsbiomaterials.8b00453. PubMed DOI

Burgert L., Hrdina R., Masek D., Velebny V. Hyaluronan Fibres, Method of Preparation Thereof and Use Thereof. WO2012089179A1. 2012 Jul 5;

Betak J., Buffa R., Nemcova M., Pitucha T., Kulhanek J., Matejkova I., Novakova J., Vistejnovak L., Klein P., Kubickova G., et al. Endless Fibres on the Basis of Hyaluronan Selectively Oxidized in the Position 6 of the N-acetyl-D-glucosamine Group, Preparation and Use Thereof, Threads, Staples, Yarns, Fabrics Made Thereof and Method for Modifying the Same. US20150299911A1. 2015 Oct 22;

Scudlova J., Betak J., Wolfova L., Buffa R., Slezingrova K., Klein P., Matejkova I., Bobek M., Pitucha T., Velebny V., et al. Fibres Based on Hydrophobized Derivatives of Hyaluronan, Method of Their Preparation and Use, Textiles on Base Thereof and Use Thereof. US20150308016A1. 2015 Oct 29;

Basavaiah K., Doddarevanna H., Zenita O., Basavaiah K. Spectrophotometric determination of etamsylate in pharmaceuticals using ferric chloride based on complex formation reactions. Chem. Ind. Chem. Eng. Q. 2010;16:1–9. doi: 10.2298/CICEQ090617005B. DOI

Chalupová M., Suchý P., Pražanová G., Bartošová L., Sopuch T., Havelka P. Local tissue reaction after the application of topical hemostatic agents in a rat partial nephrectomy model. J. Biomed. Mater. Res. Part A. 2012;100:1582–1590. doi: 10.1002/jbm.a.34098. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Kuzmínová G. Rigorous Thesis. St. Elizabeth University College of Health and Social Work in Bratislava; Bratislava, Slovakia: 2016. Immunohistochemistry Analysis of Cytokin TNF-alpha and TGF-beta1 Expression in a Site of Healing Wound Covered by Chemically Modified Cellulose.

Cobo-Nuñez M.Y., El Assar M., Cuevas P., Sánchez-Ferrer A., Martínez-González J., Rodríguez-Mañas L., Angulo J. Haemostatic agent etamsylate in vitro and in vivo antagonizes anti-coagulant activity of heparin. Eur. J. Pharmacol. 2018;15:162–172. doi: 10.1016/j.ejphar.2018.03.028. PubMed DOI

Yao Q., Wu M., Zhou J., Zhou M., Chen D., Fu L., Bian R., Xing X., Sun L., Hu X., et al. Treatment of persistent gross hematuria with tranexamic acid in autosomal dominant polycystic kidney disease. Kidney Blood Press. Res. 2017;42:156–164. doi: 10.1159/000474961. PubMed DOI

Oberholzer A., Oberholzer C., Moldawer L.L. Cytokine signaling-regulation of the immune response in normal and critically ill states. Crit. Care Med. 2000;28:N3–N12. doi: 10.1097/00003246-200004001-00002. PubMed DOI

Fan H., Chen K., Duan L., Wang Y.Z., Ju G. Beneficial effects of early hemostasis on spinal cord injury in the rat. Spinal Cord. 2016;54:924–932. doi: 10.1038/sc.2016.58. PubMed DOI PMC

Liu H., Wang C., Li C., Qin Y., Wang Z., Yang F., Li Z., Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8:7533–7549. doi: 10.1039/C7RA13510F. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of novel carboxymethyl cellulose-based dressings on acute wound healing dynamics

. 2023 Oct ; 68 (10) : 403-411. [epub] 20231030

Nonwoven Textiles from Hyaluronan for Wound Healing Applications

. 2021 Dec 23 ; 12 (1) : . [epub] 20211223

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...