Composite Hemostatic Nonwoven Textiles Based on Hyaluronic Acid, Cellulose, and Etamsylate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
322/2016/FaF
Veterinární a Farmaceutická Univerzita Brno
PubMed
32244805
PubMed Central
PMC7178357
DOI
10.3390/ma13071627
PII: ma13071627
Knihovny.cz E-zdroje
- Klíčová slova
- cellulose, etamsylate, hemostasis, hyaluronic acid, nonwoven textile,
- Publikační typ
- časopisecké články MeSH
The achievement of rapid hemostasis represents a long-term trend in hemostatic research. Specifically, composite materials are now the focus of attention, based on the given issues and required properties. In urology, different materials are used to achieve fast and effective hemostasis. Additionally, it is desirable to exert a positive influence on local tissue reaction. In this study, three nonwoven textiles prepared by a wet spinning method and based on a combination of hyaluronic acid with either oxidized cellulose or carboxymethyl cellulose, along with the addition of etamsylate, were introduced and assessed in vivo using the rat partial nephrectomy model. A significantly shorter time to hemostasis in seconds (p < 0.05), was attributed to the effect of the carboxymethyl cellulose material. The addition of etamsylate did not noticeably contribute to further hemostasis, but its application strengthened the structure and therefore significantly improved the effect on local changes, while also facilitating any manipulation by the surgeons. Specifically, the hyaluronic acid supported the tissue healing and regeneration, and ensured the favorable results of the histological analysis. Moreover, the prepared textiles proved their bioresorbability after a three-day period. In brief, the fabrics yielded favorable hemostatic activity, bioresorbability, non-irritability, and had a beneficial effect on the tissue repair.
Contipro a s 561 02 Dolní Dobrouč Czech Republic
Department of Physiology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Stassen J.M., Arnout J., Deckmyn H. The hemostatic system. Curr. Med. Chem. 2004;11:2245–2260. doi: 10.2174/0929867043364603. PubMed DOI
Lattouf J.B., Beri A., Klinger C.H., Jeschke S., Janetschek G. Practical hints for hemostasis in laparoscopic surgery. Minim. Invasive Ther. Allied Technol. 2007;16:45–51. doi: 10.1080/13645700601157984. PubMed DOI
Tan S.R., Tope W.D. Effectiveness of microporous polysaccharide hemospheres for achieving hemostasis in mohs micrographic surgery. Dermatol. Surg. 2004;30:908–914. doi: 10.1111/j.1524-4725.2004.30261.x. PubMed DOI
Recinos G., Inaba K., Dubose J., Demetriades D., Rhee P. Local and systemic hemostatics in trauma: A review. Ulus. Travma Acil Cerrahi Derg. 2008;14:175–181. PubMed
Achneck H.E., Sileshi B., Jamiolkowski R.M., Albala D.M., Shapiro M.L., Lawson J.H. A comprehensive review of topical hemostatic agents: Efficacy and recommendations for use. Ann. Surg. 2010;251:217–228. doi: 10.1097/SLA.0b013e3181c3bcca. PubMed DOI
Schonauer C., Tessitore E., Barbagallo G., Albanese V., Moraci A. The use of local agents: Bone wax, gelatin, collagen, oxidized cellulose. Eur. Spine J. 2004;13:89–96. doi: 10.1007/s00586-004-0727-z. PubMed DOI PMC
Panwar V., Thomas J., Sharma A., Chopra V., Kaushik S. In-vitro and in-vivo evaluation of modified sodium starch glycolate for exploring its haemostatic potential. Carbohydr. Polym. 2020;235:115975. doi: 10.1016/j.carbpol.2020.115975. PubMed DOI
Cassano R., Di Gioia M.L., Mellace S., Picci N., Trombino S. Hemostatic gauze based on chitosan and hydroquinone: Preparation, characterization and blood coagulation evaluation. J. Mater. Sci. Mater. Med. 2017;28:190. doi: 10.1007/s10856-017-6000-x. PubMed DOI
LV F., Cong X., Tang W., Han Y., Tang Y., Liu Y., Su L., Liu M., Jin M., Yi Z. Novel hemostatic agents based on gelatin-microbial transglutaminase mix. Sci. China Life Sci. 2017;60:397–403. doi: 10.1007/s11427-015-9019-x. PubMed DOI
Fathi P., Sikorski M., Christodoulides K., Langan K., Choi Y.S., Titcomb M., Ghodasara A., Wonodi O., Thaker H., Vural M., et al. Zeolite-loaded alginate-chitosan hydrogel beads as a topical hemostat. J. Biomed. Mater. Res. Part B. 2018;106B:1662–1671. doi: 10.1002/jbm.b.33969. PubMed DOI PMC
Song B., Yang L., Han L., Jia L. Metal Ion-Chelated Tannic Acid Coating for Hemostatic Dressing. Materials (Basel) 2019;12:1803. doi: 10.3390/ma12111803. PubMed DOI PMC
Aydemir Sezer U., Kocer Z., Sahin I., Aru B., Demirel G.Y. Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydr. Polym. 2018;200:624–632. doi: 10.1016/j.carbpol.2018.07.074. PubMed DOI
Sukul M., Ventura R.D., Bae S.H., Choi H.J., Lee S.Y., Lee B.T. Plant-derived oxidized nanofibrillar cellulose-chitosan composite as an absorbable hemostat. Mater. Lett. 2017;197:150–155. doi: 10.1016/j.matlet.2017.03.102. DOI
Slezak P., Keibel C., Labahn D., Schmidbauer A., Genyk Y., Gulle H. A Comparative Efficacy of Recombinant Topical Thrombin (RECOTHROM®) with a Gelatin Sponge Carrier Versus Topical Oxidized Regenerated Cellulose (TABOTAMP®/SURGICEL®) in a Porcine Liver Bleeding Model. J. Investig. Surg. 2020:1–7. doi: 10.1080/08941939.2019.1705444. PubMed DOI
Salwowska N.M., Bebenek K.A., Żądło D.A., Wcisło-Dziadecka D.L. Physiochemical properties and application of hyaluronic acid: A systematic review. J. Cosmet. Dermatol. 2016;15:520–526. doi: 10.1111/jocd.12237. PubMed DOI
Neuman M.G., Nanau R.M., Oruña-Sanchez L., Coto G. Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci. 2015;18:53–60. doi: 10.18433/J3K89D. PubMed DOI
Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI
Nyman E., Huss F., Nyman T., Junker J., Kratz G. Hyaluronic acid, an important factor in the wound healing properties of amniotic fluid: In vitro studies of re-epithelialisation in human skin wounds. J. Plast. Surg. Hand Surg. 2013;47:89–92. doi: 10.3109/2000656X.2012.733169. PubMed DOI
Møller L., Devantier K., Wulff T., Sabra M.C. Haemostatic Composition Comprising Hyaluronic Acid. EP1786480A1. 2007 May 23;
Waring M.J., Parsons D. Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials. 2001;22:903–912. doi: 10.1016/S0142-9612(00)00254-4. PubMed DOI
Ohta S., Nishiyama T., Sakoda M., Machioka K., Fuke M., Ichimura S., Inagaki F., Shimizu A., Hasegawa K., Kokudo N., et al. Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. J. Biosci. Bioeng. 2015;119:718–723. doi: 10.1016/j.jbiosc.2014.10.026. PubMed DOI
Aoshima M., Tanabe K., Kohno I., Jo Y., Takahashi K., Sugo T., Matsuda M. Hemostatic mechanisms of a soluble fraction of plant-derived sodium carboxymethyl cellulose. Jpn. J. Thromb. Hemost. 2012;23:387–398. doi: 10.2491/jjsth.23.387. DOI
Shimizu A., Hasegawa K., Masuda K., Omichi K., Miyata A., Kokudo N. Efficacy of hyaluronic acid/carboxymethyl cellulose-based bioresorbable membranes in reducing perihepatic adhesion formation: A prospective cohort study. Dig. Surg. 2018;35:95–103. doi: 10.1159/000472883. PubMed DOI
Lewis K.M., Spazierer D., Urban M.D., Lin L., Redl H., Goppelt A. Comparison of regenerated and non-regenerated oxidized cellulose hemostatic agents. Eur. Surg. 2013;45:213–220. doi: 10.1007/s10353-013-0222-z. PubMed DOI PMC
Spangler D., Rothenburger S., Nguyen K., Jampani H., Weiss S., Bhende S. In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg. Infect. 2003;4:255–262. doi: 10.1089/109629603322419599. PubMed DOI
Zhang Y., Liu Q., Yang N., Zhang X. Hyaluronic acid and oxidized regenerated cellulose prevent adhesion reformation after adhesiolysis in rat models. Drug Des. Dev. Ther. 2016;25:3501–3507. doi: 10.2147/DDDT.S103824. PubMed DOI PMC
Alvarez-Guerra M., Hernandez M.R., Escolar G., Chiavaroli C., Garay R.P., Hannaert P. The hemostatic agent ethamsylate enhances P-selectin membrane expression in human platelets and cultured endothelial cells. Thromb. Res. 2002;107:329–335. doi: 10.1016/S0049-3848(02)00353-5. PubMed DOI
Garay R.P., Ciavaroli C., Hannaert P. Therapeutic efficacy and mechanism of action of ethamsylate, a long-standing hemostatic agent. Am. J. Ther. 2006;13:236–247. doi: 10.1097/01.mjt.0000158336.62740.54. PubMed DOI
San Antonio J. Collagen and Alginate-based Formulations for Hemostasis. US20140271610A1. 2014 Sep 18;
Seon G.M., Lee M.H., Kwon B.J., Kim M.S., Koo M.A., Kim D., Seomun Y., Kim J.T., Park J.C. Functional improvement of hemostatic dressing by addition of recombinant batroxobin. Acta Biomater. 2017;48:175–185. doi: 10.1016/j.actbio.2016.10.024. PubMed DOI
Behrens A.M., Sikorski M.J., Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A. 2014;102:4182–4194. doi: 10.1002/jbm.a.35052. PubMed DOI PMC
Samudrala S. Topical Hemostatic Agents in Surgery: A Surgeon’s Perspective. AORN J. 2008;88:s2–s11. doi: 10.1016/S0001-2092(08)00586-3. PubMed DOI
Jin J., Ji Z., Xu M., Liu C., Ye X., Zhang W., Li S., Wang D., Zhang W., Chen J., et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo. ACS Biomater. Sci. Eng. 2018;4:2541–2551. doi: 10.1021/acsbiomaterials.8b00453. PubMed DOI
Burgert L., Hrdina R., Masek D., Velebny V. Hyaluronan Fibres, Method of Preparation Thereof and Use Thereof. WO2012089179A1. 2012 Jul 5;
Betak J., Buffa R., Nemcova M., Pitucha T., Kulhanek J., Matejkova I., Novakova J., Vistejnovak L., Klein P., Kubickova G., et al. Endless Fibres on the Basis of Hyaluronan Selectively Oxidized in the Position 6 of the N-acetyl-D-glucosamine Group, Preparation and Use Thereof, Threads, Staples, Yarns, Fabrics Made Thereof and Method for Modifying the Same. US20150299911A1. 2015 Oct 22;
Scudlova J., Betak J., Wolfova L., Buffa R., Slezingrova K., Klein P., Matejkova I., Bobek M., Pitucha T., Velebny V., et al. Fibres Based on Hydrophobized Derivatives of Hyaluronan, Method of Their Preparation and Use, Textiles on Base Thereof and Use Thereof. US20150308016A1. 2015 Oct 29;
Basavaiah K., Doddarevanna H., Zenita O., Basavaiah K. Spectrophotometric determination of etamsylate in pharmaceuticals using ferric chloride based on complex formation reactions. Chem. Ind. Chem. Eng. Q. 2010;16:1–9. doi: 10.2298/CICEQ090617005B. DOI
Chalupová M., Suchý P., Pražanová G., Bartošová L., Sopuch T., Havelka P. Local tissue reaction after the application of topical hemostatic agents in a rat partial nephrectomy model. J. Biomed. Mater. Res. Part A. 2012;100:1582–1590. doi: 10.1002/jbm.a.34098. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Kuzmínová G. Rigorous Thesis. St. Elizabeth University College of Health and Social Work in Bratislava; Bratislava, Slovakia: 2016. Immunohistochemistry Analysis of Cytokin TNF-alpha and TGF-beta1 Expression in a Site of Healing Wound Covered by Chemically Modified Cellulose.
Cobo-Nuñez M.Y., El Assar M., Cuevas P., Sánchez-Ferrer A., Martínez-González J., Rodríguez-Mañas L., Angulo J. Haemostatic agent etamsylate in vitro and in vivo antagonizes anti-coagulant activity of heparin. Eur. J. Pharmacol. 2018;15:162–172. doi: 10.1016/j.ejphar.2018.03.028. PubMed DOI
Yao Q., Wu M., Zhou J., Zhou M., Chen D., Fu L., Bian R., Xing X., Sun L., Hu X., et al. Treatment of persistent gross hematuria with tranexamic acid in autosomal dominant polycystic kidney disease. Kidney Blood Press. Res. 2017;42:156–164. doi: 10.1159/000474961. PubMed DOI
Oberholzer A., Oberholzer C., Moldawer L.L. Cytokine signaling-regulation of the immune response in normal and critically ill states. Crit. Care Med. 2000;28:N3–N12. doi: 10.1097/00003246-200004001-00002. PubMed DOI
Fan H., Chen K., Duan L., Wang Y.Z., Ju G. Beneficial effects of early hemostasis on spinal cord injury in the rat. Spinal Cord. 2016;54:924–932. doi: 10.1038/sc.2016.58. PubMed DOI PMC
Liu H., Wang C., Li C., Qin Y., Wang Z., Yang F., Li Z., Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8:7533–7549. doi: 10.1039/C7RA13510F. PubMed DOI PMC
Effect of novel carboxymethyl cellulose-based dressings on acute wound healing dynamics
Nonwoven Textiles from Hyaluronan for Wound Healing Applications