Nonwoven Textiles from Hyaluronan for Wound Healing Applications
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35053164
PubMed Central
PMC8773973
DOI
10.3390/biom12010016
PII: biom12010016
Knihovny.cz E-resources
- Keywords
- hyaluronan, mechanical properties, nonwoven textile, wet spinning, wound dressing,
- MeSH
- 3T3 Cells MeSH
- Wound Healing * MeSH
- Hyaluronic Acid chemistry MeSH
- Humans MeSH
- Mice MeSH
- Bandages * MeSH
- Materials Testing * MeSH
- Textiles * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hyaluronic Acid MeSH
Nonwoven textiles are used extensively in the field of medicine, including wound healing, but these textiles are mostly from conventional nondegradable materials, e.g., cotton or synthetic polymers such as polypropylene. Therefore, we aimed to develop nonwoven textiles from hyaluronan (HA), a biocompatible, biodegradable and nontoxic polysaccharide naturally present in the human body. For this purpose, we used a process based on wet spinning HA into a nonstationary coagulation bath combined with the wet-laid textile technology. The obtained HA nonwoven textiles are soft, flexible and paper like. Their mechanical properties, handling and hydration depend on the microscale fibre structure, which is tuneable by selected process parameters. Cell viability testing on two relevant cell lines (3T3, HaCaT) demonstrated that the textiles are not cytotoxic, while the monocyte activation test ruled out pyrogenicity. Biocompatibility, biodegradability and their high capacity for moisture absorption make HA nonwoven textiles a promising material for applications in the field of wound healing, both for topical and internal use. The beneficial effect of HA in the process of wound healing is well known and the form of a nonwoven textile should enable convenient handling and application to various types of wounds.
See more in PubMed
Ajmeri J.R., Ajmeri C.J. 4-Nonwoven materials and technologies for medical applications. In: Bartels V.T., editor. Handbook of Medical Textiles. Woodhead Publishing; Sawston, UK: 2011. pp. 106–131.
Liu S., Li J., Zhang S., Zhang X., Ma J., Wang N., Wang S., Wang B., Chen S. Template-Assisted Magnetron Sputtering of Cotton Nonwovens for Wound Healing Application. ACS Appl. Bio Mater. 2020;3:848–858. doi: 10.1021/acsabm.9b00942. PubMed DOI
Bulman S.E.L., Tronci G., Goswami P., Carr C., Russell S.J. Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal. Materials. 2017;10:954. doi: 10.3390/ma10080954. PubMed DOI PMC
Xin Z., Du S., Zhao C., Chen H., Sun M., Yan S., Luan S., Yin J. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Appl. Surf. Sci. 2016;365:99–107. doi: 10.1016/j.apsusc.2015.12.217. DOI
Abdel-Rahman R.M., Abdel-Mohsen A.M., Hrdina R., Burgert L., Fohlerova Z., Pavlinak D., Sayed O.N., Jančář J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int. J. Biol. Macromol. 2016;89:725–736. doi: 10.1016/j.ijbiomac.2016.04.087. PubMed DOI
Voigt J., Driver V.R. Hyaluronic acid and wound healing. Wound Repair Regen. 2012;20:317–331. doi: 10.1111/j.1524-475X.2012.00777.x. PubMed DOI
Litwiniuk M., Krejner A., Grzela T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds. 2016;28:78–88. PubMed
Fahmy H.M., Aly A.A., Abou-Okeil A. A non-woven fabric wound dressing containing layer–by–layer deposited hyaluronic acid and chitosan. Int. J. Biol. Macromol. 2018;114:929–934. doi: 10.1016/j.ijbiomac.2018.03.149. PubMed DOI
Rajzer I., Menaszek E., Bacakova L., Orzelski M., Błażewicz M. Hyaluronic Acid-Coated Carbon Nonwoven Fabrics as Potential Material for Repair of Osteochondral Defects. Fibres Text. East. Eur. 2013;99:102–107.
Puppi D., Chiellini F. Wet-spinning of biomedical polymers: From single-fibre production to additive manufacturing of three-dimensional scaffolds. Polym. Int. 2017;66:1690–1696. doi: 10.1002/pi.5332. DOI
Ucar S., Yilgor P., Hasirci V., Hasirci N. Chitosan-based wet-spun scaffolds for bioactive agent delivery. J. Appl. Polym. Sci. 2013;130:3759–3769. doi: 10.1002/app.39629. DOI
Karel S., Sogorkova J., Hermannova M., Nesporova K., Marholdova L., Chmelickova K., Bednarova L., Flegel M., Drasar P., Velebny V. Stabilization of hyaluronan-based materials by peptide conjugation and its use as a cell-seeded scaffold in tissue engineering. Carbohydr. Polym. 2018;201:300–307. doi: 10.1016/j.carbpol.2018.08.082. PubMed DOI
Karel S., Starigazdová J., Vágnerová H., Kulhánek J., Horáčková L., Flegel M., Drašar P., Brožek J., Velebný V. Hyaluronic Acid Fibres in Solid Phase Peptide Synthesis—Their Properties, Morphology and Stability. Fibers Polym. 2020;21:2707–2717.
Suchy P., Paprskarova A., Chalupova M., Marholdova L., Nesporova K., Klusakova J., Kuzminova G., Hendrych M., Velebny V. Composite Hemostatic Nonwoven Textiles Based on Hyaluronic Acid, Cellulose, and Etamsylate. Materials. 2020;13:1627. doi: 10.3390/ma13071627. PubMed DOI PMC
Milella E., Brescia E., Massaro C., Ramires P.A., Miglietta M.R., Fiori V., Aversa P. Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds. Biomaterials. 2002;23:1053–1063. doi: 10.1016/S0142-9612(01)00217-4. PubMed DOI
Campoccia D., Hunt J.A., Doherty P.J., Zhong S.P., O’Regan M., Benedetti L., Williams D.F. Quantitative assessment of the tissue response to films of hyaluronan derivatives. Biomaterials. 1996;17:963–975. doi: 10.1016/0142-9612(96)84670-9. PubMed DOI
Graca M.F.P., Miguel S.P., Cabral C.S.D., Correia I.J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym. 2020;241:116364. doi: 10.1016/j.carbpol.2020.116364. PubMed DOI
Burgert L., Hrdina R., Velebný V., Abdel-Lattif A.M., Šuláková R., Sobotka L., Běták J., Smirnou D. Process for Preparing Microfibers, Process for Preparing Wound Covers, Wound Covers per se and Apparatus for Preparing Polysachharide Fibers. CZ304651B6. 2014 August 20;
Podzimek S., Hermannova M., Bilerova H., Bezakova Z., Velebny V. Solution properties of hyaluronic acid and comparison of SEC-MALS-VIS datawith off-line capillary viscometry. J. Appl. Polym. Sci. 2010;116:3013–3020.
Andrews E.H., Kamyab I. Adhesion of surgical dressings to wounds. A new invitro model. Clin. Mater. 1986;1:9–21. doi: 10.1016/S0267-6605(86)80058-0. DOI
Biological Evaluation of Medical Device–Part 5: Tests for In Vitro Cytotoxicity. ISO; Geneva, Switzerland: 2009.
Pang F.-M., Seng C.-E., Teng T.-T., Ibrahim M.H. Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K. J. Mol. Liq. 2007;136:71–78. doi: 10.1016/j.molliq.2007.01.003. DOI
ICH Expert Working Group . ICH Guideline Q3C (R8) on Impurities: Guideline for Residual Solvents. European Medicines Agency; Amsterdam, The Netherlands: 2021.
Koski A., Yim K., Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004;58:493–497. doi: 10.1016/S0167-577X(03)00532-9. DOI
Cho H.J., Yoo Y.J., Kim J.W., Park Y.H., Bae D.G., Um I.C. Effect of molecular weight and storage time on the wet-and electro-spinning of regenerated silk fibroin. Polym. Degrad. Stab. 2012;97:1060–1066. doi: 10.1016/j.polymdegradstab.2012.03.007. DOI
Gupta P., Elkins C., Long T.E., Wilkes G.L. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005;46:4799–4810.
Xie K., Tu H., Dou Z., Liu D., Wu K., Liu Y., Chen F., Zhang L., Fu Q. The effect of cellulose molecular weight on internal structure and properties of regenerated cellulose fibers as spun from the alkali/urea aqueous system. Polymer. 2021;215:123379. doi: 10.1016/j.polymer.2021.123379. DOI
Zander N.E., Gillan M., Sweetser D. Recycled PET Nanofibers for Water Filtration Applications. Materials. 2016;9:247. doi: 10.3390/ma9040247. PubMed DOI PMC
Leone M., Romeijn S., Slütter B., O’Mahony C., Kersten G., Bouwstra J.A. Hyaluronan molecular weight: Effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen. Eur. J. Pharm. Sci. 2020;146:105269. doi: 10.1016/j.ejps.2020.105269. PubMed DOI
Hsieh Y.-L. Liquid Transport in Fabric Structures. Text. Res. J. 1995;65:299–307. doi: 10.1177/004051759506500508. DOI
Jiang D., Liang J., Noble P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011;91:221–264. doi: 10.1152/physrev.00052.2009. PubMed DOI PMC
Ferrari L.F., Khomula E.V., Araldi D., Levine J.D. CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. J. Neurosci. 2018;38:308–321. doi: 10.1523/JNEUROSCI.2695-17.2017. PubMed DOI PMC
Nesporova K., Pavlik V., Safrankova B., Vagnerova H., Odraska P., Zidek O., Cisarova N., Skoroplyas S., Kubala L., Velebny V. Effects of wound dressings containing silver on skin and immune cells. Sci. Rep. 2020;10:15216. doi: 10.1038/s41598-020-72249-3. PubMed DOI PMC