Straw in Clay Bricks and Plasters-Can We Use Its Molecular Decay for Dating Purposes?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32244982
PubMed Central
PMC7144354
DOI
10.3390/molecules25061419
PII: molecules25061419
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR spectroscopy, adobe construction, earth construction, straw amendments, vernacular architecture,
- MeSH
- časové faktory MeSH
- jíl chemie MeSH
- konstrukční materiály analýza MeSH
- spektrální analýza MeSH
- stopové prvky analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jíl MeSH
- stopové prvky MeSH
Dating of clay bricks (adobe) and plasters is a relevant topic not only for building historians in the Pannonian region. Especially in vernacular architecture in this region, clay with straw amendments is a dominant construction material. The paper presents the potential of the molecular decay of these amendments to establish prediction tools for age based on infrared spectroscopic measurements. Preliminary results revealed spectral differences between the different plant parts, especially culms, nodes, and ear spindles. Based on these results, a first prediction model is presented including 14 historic samples. The coefficient of determination for the validation reached 62.2%, the (RMSE) root mean squared error amounted to 93 years. Taking the limited sample amount and the high material heterogeneity into account, this result can be seen as a promising output. Accordingly, sample size should be increased to a minimum of 100 objects and separate models for the different plant parts should be established.
Faculty of Architecture University of Technology Poříčí 273 5 639 00 Brno Czech Republic
Lopas GmbH Oberwaltersdorfer Straße 2c 2523 Tattendorf Austria
National Heritage Institute Valdštejnské náměstí 162 3 1118 01 Praha Czech Republic
Zobrazit více v PubMed
Schroeder H. Building with earth—The current situation of a traditional construction. In: Feiglstorfer H., editor. Earth Construction & Tradition. Volume 1. IVA-Verlag; Vienna, Austria: 2016. pp. 25–37.
Meingast R., Feiglstorfer H. Earth building history in eastern Austria. In: Feiglstorfer H., editor. Earth Construction & Tradition. Volume 2. IVA-ICRA Institute for Comparative Research in Architecture; Wien, Austria: 2018. pp. 21–83.
Pacheco-Torgal F., Jalali S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012;29:512–519. doi: 10.1016/j.conbuildmat.2011.10.054. DOI
Laborel-Préneron A., Aubert J., Magniont C., Tribout C., Bertron A. Plant aggregates and fibers in earth construction materials: A review. Constr. Build. Mater. 2016;111:719–734. doi: 10.1016/j.conbuildmat.2016.02.119. DOI
Hurter A.M. Utilization of annual plants and agricultural residues for the production of pulp and paper; Proceedings of the Pulping Conference; New Orleans, LA, USA. 30 October–2 November 1988.
Speer J.H. Fundamentals of Tree-Ring Research. University of Arizona Press; Tucson, AZ, USA: 2010.
Stokes M.A., Smiley T.L. An Introduction to Tree-Ring Dating, [Nachdr.] University of Arizona Press; Tucson, AZ, USA: 2008.
Tintner J., Smidt E., Tieben J., Reschreiter H., Kowarik K., Grabner M. Aging of wood under long-term storage in a salt environment. Wood Sci. Technol. 2016;50:953–961. doi: 10.1007/s00226-016-0830-4. DOI
Tintner J., Smidt E., Aumuller C., Martin P., Ottner F., Wriessnig K., Reschreiter H. Taphonomy of prehistoric bark in a salt environment at the archaeological site in Hallstatt, Upper Austria—An analytical approach based on FTIR spectroscopy. Vib. Spectrosc. 2018;97:39–43. doi: 10.1016/j.vibspec.2018.05.006. DOI
Smidt E., Tintner J., Klemm S., Scholz U. FT-IR spectral and thermal characterization of ancient charcoals—A tool to support archeological and historical data interpretation. Quat. Int. 2017;457:43–49. doi: 10.1016/j.quaint.2016.11.031. DOI
Tintner J., Spangl B., Reiter F., Smidt E., Grabner M. Infrared spectral characterization of the molecular wood decay in terms of age. Wood Sci. Technol. 2020;54:313–327. doi: 10.1007/s00226-020-01160-x. DOI
Williams C.L., Emerson R., Tumuluru J.S. Biomass Volume Estimation and Valorization for Energy. IntechOpen; London, UK: 2017. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals.
Smidt E., Schwanninger M., Tintner J., Bohm K. Ageing and Deterioration of Materials in the Environment – Application of Multivariate Data Analysis. In: Freitas L., editor. Multivariate Analysis in Management, Engineering and the Sciences. InTech; London, UK: 2013. pp. 134–160.
Schwanninger M., Rodrigues J., Pereira H., Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004;36:23–40. doi: 10.1016/j.vibspec.2004.02.003. DOI
Nopp-Mayr U., Zohmann-Neuberger M., Tintner J., Kriechbaum M., Rosenberger R., Nopp H., Bosa A., Smidt E. From plants to feces: pilot applications of FTIR spectroscopy for studies on the foraging ecology of an avian herbivore. J. Ornithol. 2019;161:203–215. doi: 10.1007/s10336-019-01718-y. DOI
Smith B.C. Infrared Spectral Interpretation. A Systematic Approach. CRC Press; Boca Raton, FL, USA: 1999.
Ghaffar S.H., Fan M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy. 2013;57:264–279. doi: 10.1016/j.biombioe.2013.07.015. DOI
Del Río J.C., Lino A.G., Colodette J.L., Lima C.F., Gutiérrez A., Martinez M.J., Lu F., Ralph J., Rencoret J. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenergy. 2015;81:322–338. doi: 10.1016/j.biombioe.2015.07.006. DOI
Marechal Y., Chanzy H. The hydrogen bond network in I β cellulose as observed by infrared spectrometry. J. Mol. Struct. 2000;523:183–196. doi: 10.1016/S0022-2860(99)00389-0. DOI
Tollmann A. Geologie von Österreich. Deuticke; Vienna, Austria: 1985.
Pizzo B., Pecoraro E., Alves A., Macchioni N., Rodrigues J. Quantitative evaluation by attenuated total reflectance infrared (ATR-FTIR) spectroscopy of the chemical composition of decayed wood preserved in waterlogged conditions. Talanta. 2015;131:14–20. doi: 10.1016/j.talanta.2014.07.062. PubMed DOI
Pedersen N.B. Ph.D. Thesis. University of Copenhagen; Copenhagen, Denmark: 2015. Microscopic and Spectroscopic Characterisation of Waterlogged Archaeological Softwood from Anoxic Environments.
Smidt E., Eckhardt K.-U., Lechner P., Schulten H.-R., Leinweber P. Characterization of different decomposition stages of biowaste using FT-IR spectroscopy and pyrolysis-field ionization mass spectrometry. Biodgegradationchem. 2005;16:67–79. doi: 10.1007/s10531-004-0430-8. PubMed DOI
Williams L.B., Holland M., Eberl D.D., Brunet T., DeCourrsou L.B. Killer clays! Natural antibacterial clay minerals. Mineral. Soc. Bull. 2004;139:3–8.
Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B: Biointerfaces. 2010;79:5–18. doi: 10.1016/j.colsurfb.2010.03.029. PubMed DOI
Syrová Z., Syrový J. Proceedings of the Vernacular Heritage and Earthen Architecture. Volume 16. Informa UK Limited; London, UK: 2013. Historic daubed corner-timbered constructions in Czech Republic; pp. 29–34.
Škabrada J., Syrová-Anýžová Z., editors. Nejstarší venkovské domy ve východních Čechách. Univerzita Pardubice, Fakulta filozofická; Společnost pro obnovu vesnice a malého města, z.s; Pardubice, Czech Republic: 2018.