Modified linear regression predicts drug-target interactions accurately
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32251481
PubMed Central
PMC7135267
DOI
10.1371/journal.pone.0230726
PII: PONE-D-19-25484
Knihovny.cz E-zdroje
- MeSH
- cílená molekulární terapie * MeSH
- léčivé přípravky metabolismus MeSH
- lineární modely MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- léčivé přípravky MeSH
State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
Center for the Study of Complexity Babes Bolyai University Cluj Napoca Romania
Faculty of Informatics ELTE Eötvös Loránd University Budapest Hungary
Institute of Genomic Medicine and Rare Disorders Semmelweis University Budapest Hungary
Zobrazit více v PubMed
Ding Y, Tang J, Guo F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing. 2019;325:211–224. 10.1016/j.neucom.2018.10.028 DOI
Liu LJ, Lu L, Zhong HJ, He B, Kwong DW, Ma DL, et al. An iridium (III) complex inhibits JMJD2 activities and acts as a potential epigenetic modulator. Journal of medicinal chemistry. 2015;58(16):6697–6703. 10.1021/acs.jmedchem.5b00375 PubMed DOI
Kang TS, Mao Z, Ng CT, Wang M, Wang W, Wang C, et al. Identification of an iridium (III)-based inhibitor of tumor necrosis factor-α. Journal of medicinal chemistry. 2016;59(8):4026–4031. 10.1021/acs.jmedchem.6b00112 PubMed DOI
Liu LJ, He B, Miles JA, Wang W, Mao Z, Che WI, et al. Inhibition of the p53/hDM2 protein-protein interaction by cyclometallated iridium (III) compounds. Oncotarget. 2016;7(12):13965 10.18632/oncotarget.7369 PubMed DOI PMC
Yang C, Wang W, Li GD, Zhong HJ, Dong ZZ, Wong CY, et al. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Scientific reports. 2017;7:42860 10.1038/srep42860 PubMed DOI PMC
Ullrich K, Mack J, Welke P. Ligand Affinity Prediction with Multi-pattern Kernels. In: International Conference on Discovery Science. Springer; 2016. p. 474–489.
Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug development: a systematic review. Health policy. 2011;100(1):4–17. 10.1016/j.healthpol.2010.12.002 PubMed DOI
Zhang J, Li C, Lin Y, Shao Y, Li S. Computational drug repositioning using collaborative filtering via multi-source fusion. Expert Systems with Applications. 2017;84:281–289. 10.1016/j.eswa.2017.05.004 DOI
Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, et al. Structure-based maximal affinity model predicts small-molecule druggability. Nature biotechnology. 2007;25(1):71–75. 10.1038/nbt1273 PubMed DOI
Pérot S, Regad L, Reynès C, Spérandio O, Miteva MA, Villoutreix BO, et al. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction. PloS one. 2013;8(6):e63730 10.1371/journal.pone.0063730 PubMed DOI PMC
Cellier P, Charnois T, Plantevit M. Sequential patterns to discover and characterise biological relations. In: International Conference on Intelligent Text Processing and Computational Linguistics. Springer; 2010. p. 537–548.
Fayruzov T, De Cock M, Cornelis C, Hoste V. Linguistic feature analysis for protein interaction extraction. BMC Bioinformatics. 2009;10(1):374 10.1186/1471-2105-10-374 PubMed DOI PMC
Davis J, Santos Costa V, Ray S, Page D. An integrated approach to feature invenction and model construction for drug activity prediction. In: Proceedings of the 24th International Conference on Machine Learning; 2007. p. 217–224.
Fan X, Hong Y, Liu X, Zhang Y, Xie M. Neighborhood Constraint Matrix Completion for Drug-Target Interaction Prediction. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer; 2018. p. 348–360.
Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug discovery today. 2016;21(5):718–724. 10.1016/j.drudis.2016.01.007 PubMed DOI
Lan W, Wang J, Li M, Liu J, Li Y, Wu FX, et al. Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing. 2016;206:50–57. 10.1016/j.neucom.2016.03.080 DOI
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–i240. 10.1093/bioinformatics/btn162 PubMed DOI PMC
Buza K, Peška L. ALADIN: A New Approach for Drug–Target Interaction Prediction. Lecture Notes in Computer Science. 2017;10535:322–337. 10.1007/978-3-319-71246-8_20 DOI
Buza K, Peška L. Drug–target interaction prediction with Bipartite Local Models and hubness-aware regression. Neurocomputing. 2017;260:284–293. 10.1016/j.neucom.2017.04.055 DOI
Peska L, Buza K, Koller J. Drug-target interaction prediction: A Bayesian ranking approach. Computer methods and programs in biomedicine. 2017;152:15–21. 10.1016/j.cmpb.2017.09.003 PubMed DOI
Bolgar B, Antal P. Bayesian Matrix Factorization with Non-Random Missing Data using Informative Gaussian Process Priors and Soft Evidences. Journal of Machine Learning Research. 2016;52:25–36.
Gönen M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics. 2012;28(18):2304–2310. 10.1093/bioinformatics/bts360 PubMed DOI
Zheng X, Ding H, Mamitsuka H, Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2013. p. 1025–1033.
Wang Y, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics. 2013;29(13):i126–i134. 10.1093/bioinformatics/btt234 PubMed DOI PMC
Chen X, Liu MX, Yan GY. Drug–target interaction prediction by random walk on the heterogeneous network. Molecular BioSystems. 2012;8(7):1970–1978. 10.1039/c2mb00002d PubMed DOI
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503 10.1371/journal.pcbi.1002503 PubMed DOI PMC
Sönströd C, Johansson U, Norinder U, Boström H. Comprehensible Models for Predicting Molecular Interaction with Heart-Regulating Genes. In: 7th IEEE International Conference on Machine Learning and Applications; 2008. p. 559–564.
Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics. 2009;25(18):2397–2403. 10.1093/bioinformatics/btp433 PubMed DOI PMC
Xia Z, Wu LY, Zhou X, Wong ST. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Systems Biology. 2010;4(Suppl 2):S6 10.1186/1752-0509-4-S2-S6 PubMed DOI PMC
van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics. 2011;27(21):3036–3043. 10.1093/bioinformatics/btr500 PubMed DOI
Mei JP, Kwoh CK, Yang P, Li XL, Zheng J. Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics. 2013;29(2):238–245. 10.1093/bioinformatics/bts670 PubMed DOI
Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology. 2011;29(11):1046–1051. 10.1038/nbt.1990 PubMed DOI
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. Journal of the American Chemical Society. 2003;125(39):11853–11865. 10.1021/ja036030u PubMed DOI
Pilászy I, Tikk D. Recommending new movies: even a few ratings are more valuable than metadata. In: 3rd ACM Conf. on Recommender Systems; 2009. p. 93–100.
Suciu M, Lung RI, Gaskó N. Noisy extremal optimization. Soft Computing. 2017;21(5):1253–1270. 10.1007/s00500-015-1858-3 DOI
van Laarhoven Twan and Marchiori Elena. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PloS one. 2013;8(6):e66952 10.1371/journal.pone.0066952 PubMed DOI PMC
Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J, et al. Toward more realistic drug-target interaction predictions. Briefings in Bioinformatics. 2015;16(2):325–337. 10.1093/bib/bbu010 PubMed DOI PMC
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic acids research. 2006;34(Suppl 1):D354–D357. 10.1093/nar/gkj102 PubMed DOI PMC
Wishart David S and Knox Craig and Guo An Chi and Shrivastava Savita and Hassanali Murtaza and Stothard et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic acids research. 2006;34(Suppl 1):D668–D672. 10.1093/nar/gkj067 PubMed DOI PMC
Günther Stefan and Kuhn Michael and Dunkel Mathias and Campillos Monica and Senger Christian and Petsalaki et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic acids research. 2008;36(Suppl 1):D919–D922. 10.1093/nar/gkm862 PubMed DOI PMC
Ferrer-Garcia J, Gonzalez-Cruz VI, Navas-DeSolis S, Civera-Andres M, Morillas-Arino C, Merchante-Alfaro A, et al. Management of malignant insulinoma. Clinical and Translational Oncology. 2013;15(9):725–731. 10.1007/s12094-012-0996-7 PubMed DOI
Banerjee I, Salomon-Estebanez M, Shah P, Nicholson J, Cosgrove K, Dunne M. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabetic Medicine. 2018;. PubMed PMC
Timlin MR, Black AB, Delaney HM, Matos RI, Percival CS. Development of Pulmonary Hypertension During Treatment with Diazoxide: A Case Series and Literature Review. Pediatric cardiology. 2017;38(6):1247–1250. 10.1007/s00246-017-1652-3 PubMed DOI
Schumacher T, Benndorf RA. ABC transport proteins in cardiovascular disease—A brief summary. Molecules. 2017;22(4):589 10.3390/molecules22040589 PubMed DOI PMC
Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K ATP channel gating. Nature genetics. 2004;36(4):382 10.1038/ng1329 PubMed DOI PMC
Chutkow WA, Pu J, Wheeler MT, Wada T, Makielski JC, Burant CF, et al. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 K ATP channels. The Journal of clinical investigation. 2002;110(2):203–208. 10.1172/JCI15672 PubMed DOI PMC
Harakalova M, van Harssel JJ, Terhal PA, van Lieshout S, Duran K, Renkens I, et al. Dominant missense mutations in ABCC9 cause Cantu syndrome. Nature genetics. 2012;44(7):793 10.1038/ng.2324 PubMed DOI
Hans M, Luvisetto S, Williams ME, Spagnolo M, Urrutia A, Tottene A, et al. Functional consequences of mutations in the human α1A calcium channel subunit linked to familial hemiplegic migraine. Journal of Neuroscience. 1999;19(5):1610–1619. 10.1523/JNEUROSCI.19-05-01610.1999 PubMed DOI PMC
Wei X, Lu Z, Yang T, Gao P, Chen S, Liu D, et al. Stimulation of Intestinal Cl-Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats. Kidney and Blood Pressure Research. 2018;43(2):439–448. 10.1159/000488256 PubMed DOI