Smart and Regenerative Urban Growth: A Literature Network Analysis
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
32260315
PubMed Central
PMC7177348
DOI
10.3390/ijerph17072463
PII: ijerph17072463
Knihovny.cz E-resources
- Keywords
- bibliometric network, distance maps, smart and regenerative urban growth, urban ecology, urban metabolism,
- MeSH
- Quality of Life * MeSH
- Urban Renewal * MeSH
- City Planning * MeSH
- Sustainable Development MeSH
- Cities MeSH
- Public Health MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Geographicals
- Cities MeSH
"Smart city", "sustainable city", "ubiquitous city", "smart sustainable city", "eco-city", "regenerative city" are fuzzy concepts; they are established to mitigate the negative impact on urban growth while achieving economic, social, and environmental sustainability. This study presents the result of the literature network analysis exploring the state of the art in the concepts of smart and regenerative urban growth under urban metabolism framework. Heat-maps of impact citations, cutting-edge research on the topic, tip-top ideas, concepts, and theories are highlighted and revealed through VOSviewer bibliometrics based on a selection of 1686 documents acquired from Web of Science, for a timespan between 2010 and 2019. This study discloses that urban growth is a complex phenomenon that covers social, economic, and environmental aspects, and the overlaps between them, leading to a diverse range of concepts on urban development. In regards to our concepts of interest, smart, and regenerative urban growth, we see that there is an absence of conceptual contiguity since both concepts have been approached on an individual basis. This fact unveils the need to adopt a more holistic and interdisciplinary approach to urban planning and design, integrating these concepts to improve the quality of life and public health in urban areas.
See more in PubMed
Steffen W., Crutzen P.J., Mcneill J.R., Events P. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO: J. Hum. Environ. 2007;36:614–621. doi: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2. PubMed DOI
United Nations, Department of Economic and Social Affairs, & Population Division The World’s Cities in 2016. Data Booklet (ST/ESA/ SER.A/392) [(accessed on 18 February 2020)];2016 Available online: http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf.
Gerőházi É., Hegedüs J., Szemzo H., Tosics I., Tomay K., Gere L. The Impact of European Demographic Trends on Regional and Urban Development: Synthesis Report. [(accessed on 18 February 2020)];2011 Available online: https://www.eukn.eu/fileadmin/Files/Presidencies/2011_Hungary/the_impact_of_european_demographic_trends.pdf.
Haase D., Haase A., Rink D. Conceptualizing the Nexus between Urban Shrinkage and Ecosystem Services. Landsc. Urban Plan. 2014;132:159–169. doi: 10.1016/j.landurbplan.2014.09.003. DOI
Bhatta B. Urban Growth Analysis and Remote Sensing. SpringerBriefs in Geography; Berlin, Germany: 2012. Review of Literature; pp. 9–32. DOI
Enyedi G.Y. A városnövekedés szakaszai. Akadémia Kiadó; Budapest, Hungary: 1988.
Hosszu S. Counter Urbanization: A Literature Study. Danish Institute of Rural Research and Development, University of Southern Denmark; Esbjerg, Denmark: 2009. Working Paper No 06/2009.
Ahmad F., Goparaju L. Analysis of Urban Sprawl Dynamics Using Geospatial Technology in Ranchi City. J. Environ. Geogr. 2016;9:7–13. doi: 10.1515/jengeo-2016-0002. DOI
Torrens P., Alberti M. Measuring Sprawl. Centre for Advanced Spatial Analysis (CASA), University College London; London, UK: 2000. (CASA Paper 27)
Jaeger J.A.G., Bertiller R., Schwick C., Kienast F. Suitability criteria for measures of urban Sprawl. Ecol. Indic. 2010;10:427–441. doi: 10.1016/j.ecolind.2009.07.010. DOI
European Environment Agency (EEA) Urban Sprawl in Europe: Joint EEA-FOEN report No 11/2016 for EEA and FOEN. [(accessed on 18 February 2020)];2016 Available online: https://www.eea.europa.eu/publications/urban-sprawl-in-europe.
Frumkin H. Urban Sprawl and Public Health. Public Health Rep. 2002;117:201–217. doi: 10.1016/S0033-3549(04)50155-3. PubMed DOI PMC
Albino V., Berardi U., Dangelico R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2017;22:3–21. doi: 10.1080/10630732.2014.942092. DOI
Bhatta B. Analysis of Urban Growth and Sprawl from Remote Sensing Data. Springer; Berlin/Heidelberg, Germany: 2010. Causes and Consequences of Urban Growth and Sprawl; pp. 17–36. Advances in Geographic Information Science. DOI
Flis I., van Eck N.J. Framing psychology as a discipline (1950–1999): A large-scale term co-occurrence analysis of scientific literature in psychology. Hist. Psychol. 2018;21:334–362. doi: 10.1037/hop0000067. PubMed DOI
Van Nunen K., Li J., Reniers G., Ponnet K. Bibliometric analysis of safety culture research. Safety Sci. 2018;108:248–258. doi: 10.1016/j.ssci.2017.08.011. DOI
Krauskopf E. A bibliometric analysis of the Journal of Infection and Public Health: 2008–2016. J. Infect. Public Heal. 2018;11:224–229. doi: 10.1016/j.jiph.2017.12.011. PubMed DOI
Park J.Y., Nagy Z. Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review. Renew. Sustain. Energy Rev. 2018;82:2664–2679. doi: 10.1016/j.rser.2017.09.102. DOI
Dyer M., Corsini F., Certomà C. Making urban design a public participatory goal: Toward evidence-based urbanism. Proc. Instit. Civil Eng. Urban Des. Plan. 2017;170:173–186. doi: 10.1680/jurdp.16.00038. DOI
Van Eck N.J., Waltman L., Van den Berg J., Kaymak U. Visualizing the computational intelligence field. IEEE Comput. Intell. M. 2006;1:6–10. doi: 10.1109/CI-M.2006.248043. DOI
Van Eck N.J., Waltman L. VOS: A new method for visualizing similarities between objects. In: Lenz H.-J., Decker R., editors. Advances in Data Analysis. Springer; Berlin/Heidelberg, Germany: 2007. pp. 299–306. Proceedings of the 30th Annual Conference of the German Classification Society. DOI
Van Eck N.J., Waltman L. Bibliometric mapping of the computational intelligence field. IJUFKS. 2007;15:625–645. doi: 10.1142/S0218488507004911. DOI
Van Eck N.J., Waltman L. How to normalize cooccurrence data? An analysis of some well-known similarity measures. JASIST. 2009;60:1635–1651. doi: 10.1002/asi.21075. DOI
Van Eck N.J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–538. doi: 10.1007/s11192-009-0146-3. PubMed DOI PMC
Van Eck N.J., Waltman L. Visualizing bibliometric networks. In: Ding Y., Rousseau R., Wolfram D., editors. Measuring Scholarly Impact: Methods and Practice. Springer; Cham, Switzerland: 2014. pp. 285–320. DOI
Perianes-Rodriguez A., Waltman L., van Eck N.J. Constructing Bibliometric Networks: A Comparison between Full and Fractional Counting. J. Informetr. 2016;10:1178–1195. doi: 10.1016/j.joi.2016.10.006. DOI