ZEB1: A Critical Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32266287
PubMed Central
PMC7096573
DOI
10.3389/fmolb.2020.00036
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage response, EMT-epithelial to mesenchymal transition, ZEB1, plasticity, therapy resistance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The predominant way in which conventional chemotherapy kills rapidly proliferating cancer cells is the induction of DNA damage. However, chemoresistance remains the main obstacle to therapy effectivity. An increasing number of studies suggest that epithelial-to-mesenchymal transition (EMT) represents a critical process affecting the sensitivity of cancer cells to chemotherapy. Zinc finger E-box binding homeobox 1 (ZEB1) is a prime element of a network of transcription factors controlling EMT and has been identified as an important molecule in the regulation of DNA damage, cancer cell differentiation, and metastasis. Recent studies have considered upregulation of ZEB1 as a potential modulator of chemoresistance. It has been hypothesized that cancer cells undergoing EMT acquire unique properties that resemble those of cancer stem cells (CSCs). These stem-like cells manifest enhanced DNA damage response (DDR) and DNA repair capacity, self-renewal, or chemoresistance. In contrast, functional experiments have shown that ZEB1 induces chemoresistance regardless of whether other EMT-related changes occur. ZEB1 has also been identified as an important regulator of DDR by the formation of a ZEB1/p300/PCAF complex and direct interaction with ATM kinase, which has been linked to radioresistance. Moreover, ATM can directly phosphorylate ZEB1 and enhance its stability. Downregulation of ZEB1 has also been shown to reduce the abundance of CHK1, an effector kinase of DDR activated by ATR, and to induce its ubiquitin-dependent degradation. In this perspective, we focus on the role of ZEB1 in the regulation of DDR and describe the mechanisms of ZEB1-dependent chemoresistance.
Centre for BioSystems Science and Engineering Indian Institute of Science Bangalore India
Department of Cytokinetics Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Urology Experimental Urology Innsbruck Medical University Innsbruck Austria
Zobrazit více v PubMed
Bao S., Wu Q., Mclendon R. E., Hao Y., Shi Q., Hjelmeland A. B., et al. . (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760. 10.1038/nature05236 PubMed DOI
Bermudez M., Aguilar-Medina M., Lizarraga-Verdugo E., Avendano-Felix M., Silva-Benitez E., Lopez-Camarillo C., et al. . (2019). LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front. Oncol. 9:1008. 10.3389/fonc.2019.01008 PubMed DOI PMC
Brabletz S., Brabletz T. (2010). The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677. 10.1038/embor.2010.117 PubMed DOI PMC
Brabletz T. (2012). To differentiate or not–routes towards metastasis. Nat. Rev. Cancer 12, 425–436. 10.1038/nrc3265 PubMed DOI
Brabletz T., Kalluri R., Nieto M. A., Weinberg R. A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128–134. 10.1038/nrc.2017.118 PubMed DOI
Bracken C. P., Li X., Wright J. A., Lawrence D. M., Pillman K. A., Salmanidis M., et al. . (2014). Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040–2056. 10.15252/embj.201488641 PubMed DOI PMC
Bullock M. D., Sayan A. E., Packham G. K., Mirnezami A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol. Cell 104, 3–12. 10.1111/boc.201100115 PubMed DOI
Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., et al. . (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589. 10.1038/embor.2008.74 PubMed DOI PMC
Caramel J., Ligier M., Puisieux A. (2018). Pleiotropic roles for ZEB1 in Cancer. Cancer Res. 78, 30–35. 10.1158/0008-5472.CAN-17-2476 PubMed DOI
Carey L. A., Dees E. C., Sawyer L., Gatti L., Moore D. T., Collichio F., et al. . (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334. 10.1158/1078-0432.CCR-06-1109 PubMed DOI
Carpenter R. A., Kwak J. G., Peyton S. R., Lee J. (2018). Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nat. Biomed. Eng. 2, 915–929. 10.1038/s41551-018-0307-x PubMed DOI PMC
Celia-Terrassa T., Bastian C., Liu D. D., Ell B., Aiello N. M., Wei Y., et al. . (2018). Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat. Commun. 9:5005. 10.1038/s41467-018-07538-7 PubMed DOI PMC
Chang C. J., Chao C. H., Xia W., Yang J. Y., Xiong Y., Li C. W., et al. . (2011). P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323. 10.1038/ncb2173 PubMed DOI PMC
Chen J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 6:a026104. 10.1101/cshperspect.a026104 PubMed DOI PMC
Chen X., Chen Z., Yu S., Nie F., Yan S., Ma P., et al. . (2018). Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin. Cancer Res. 24, 2002–2014. 10.1158/1078-0432.CCR-17-2376 PubMed DOI
Chua H. L., Bhat-Nakshatri P., Clare S. E., Morimiya A., Badve S., Nakshatri H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724. 10.1038/sj.onc.1209808 PubMed DOI
Chung V. Y., Tan T. Z., Ye J., Huang R. L., Lai H. C., Kappei D., et al. . (2019). The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun. Biol. 2:272. 10.1038/s42003-019-0506-3 PubMed DOI PMC
Cieply B., Riley P. T., Pifer P. M., Widmeyer J., Addison J. B., Ivanov A. V., et al. . (2012). Suppression of the epithelial-mesenchymal transition by grainyhead-like-2. Cancer Res. 72, 2440–2453. 10.1158/0008-5472.CAN-11-4038 PubMed DOI PMC
Cochrane D. R., Spoelstra N. S., Howe E. N., Nordeen S. K., Richer J. K. (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol. Cancer Ther. 8, 1055–1066. 10.1158/1535-7163.MCT-08-1046 PubMed DOI PMC
Cui Y., Qin L., Tian D., Wang T., Fan L., Zhang P., et al. . (2018). ZEB1 promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy 63, 262–271. 10.1159/000493864 PubMed DOI
De Cock J. M., Shibue T., Dongre A., Keckesova Z., Reinhardt F., Weinberg R. A. (2016). Inflammation triggers Zeb1-Dependent escape from tumor latency. Cancer Res. 76, 6778–6784. 10.1158/0008-5472.CAN-16-0608 PubMed DOI PMC
El Bezawy R., Cominetti D., Fenderico N., Zuco V., Beretta G. L., Dugo M., et al. . (2017). MiR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett. 395, 53–62. 10.1016/j.canlet.2017.02.033 PubMed DOI
El Bezawy R., Tinelli S., Tortoreto M., Doldi V., Zuco V., Folini M., et al. . (2019). MiR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. J. Exp. Clin. Cancer Res. 38:51. 10.1186/s13046-019-1060-z PubMed DOI PMC
Figiel S., Vasseur C., Bruyere F., Rozet F., Maheo K., Fromont G. (2017). Clinical significance of epithelial-mesenchymal transition markers in prostate cancer. Hum. Pathol. 61, 26–32. 10.1016/j.humpath.2016.10.013 PubMed DOI
Fischer K. R., Durrans A., Lee S., Sheng J., Li F., Wong S. T., et al. . (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476. 10.1038/nature15748 PubMed DOI PMC
Fu D., Huang Y., Gao M. (2019). Hsa_circ_0057481 promotes laryngeal cancer proliferation and migration by modulating the miR-200c/ZEB1 axis. Int. J. Clin. Exp. Pathol. 12, 4066–4076. PubMed PMC
Galvan J. A., Zlobec I., Wartenberg M., Lugli A., Gloor B., Perren A., et al. . (2015). Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br. J. Cancer 112, 1944–1950. 10.1038/bjc.2015.177 PubMed DOI PMC
Giacomelli C., Daniele S., Natali L., Iofrida C., Flamini G., Braca A., et al. . (2017). Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci. Rep. 7:15174. 10.1038/s41598-017-15360-2 PubMed DOI PMC
Gregory P. A., Bert A. G., Paterson E. L., Barry S. C., Tsykin A., Farshid G., et al. . (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601. 10.1038/ncb1722 PubMed DOI
Han Y., Luo Y., Wang Y., Chen Y., Li M., Jiang Y. (2016). Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway. Oncol. Lett. 11, 753–759. 10.3892/ol.2015.3943 PubMed DOI PMC
Hanrahan K., O'neill A., Prencipe M., Bugler J., Murphy L., Fabre A., et al. . (2017). The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol. 11, 251–265. 10.1002/1878-0261.12030 PubMed DOI PMC
Hay E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat. 154, 8–20. 10.1159/000147748 PubMed DOI
Her N. G., Oh J. W., Oh Y. J., Han S., Cho H. J., Lee Y., et al. . (2018). Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9:792. 10.1038/s41419-018-0825-1 PubMed DOI PMC
Horiguchi K., Sakamoto K., Koinuma D., Semba K., Inoue A., Inoue S., et al. . (2012). TGF-β drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene 31, 3190–3201. 10.1038/onc.2011.493 PubMed DOI PMC
Huang R. Y., Wong M. K., Tan T. Z., Kuay K. T., Ng A. H., Chung V. Y., et al. . (2013). An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4:e915. 10.1038/cddis.2013.442 PubMed DOI PMC
Huarte M. (2015). The emerging role of lncRNAs in cancer. Nat. Med. 21, 1253–1261. 10.1038/nm.3981 PubMed DOI
Hurteau G. J., Carlson J. A., Spivack S. D., Brock G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67, 7972–7976. 10.1158/0008-5472.CAN-07-1058 PubMed DOI
Izutsu N., Maesawa C., Shibazaki M., Oikawa H., Shoji T., Sugiyama T., et al. . (2008). Epigenetic modification is involved in aberrant expression of class III beta-tubulin, TUBB3, in ovarian cancer cells. Int. J. Oncol. 32, 1227–1235. 10.3892/ijo_32_6_1227 PubMed DOI
Jia W., Deshmukh A., Mani S. A., Jolly M. K., Levine H. (2019). A possible role for epigenetic feedback regulation in the dynamics of the epithelial-mesenchymal transition (EMT). Phys. Biol. 16:066004. 10.1088/1478-3975/ab34df PubMed DOI PMC
Jolly M. K., Preca B. T., Tripathi S. C., Jia D., George J. T., Hanash S. M., et al. . (2018). Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng. 2:031908. 10.1063/1.5024874 PubMed DOI PMC
Jolly M. K., Tripathi S. C., Jia D., Mooney S. M., Celiktas M., Hanash S. M., et al. . (2016). Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7, 27067–27084. 10.18632/oncotarget.8166 PubMed DOI PMC
Joseph J. V., Conroy S., Tomar T., Eggens-Meijer E., Bhat K., Copray S., et al. . (2014). TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 5:e1443. 10.1038/cddis.2014.395 PubMed DOI PMC
Kahlert U. D., Maciaczyk D., Doostkam S., Orr B. A., Simons B., Bogiel T., et al. . (2012). Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett. 325, 42–53. 10.1016/j.canlet.2012.05.024 PubMed DOI
Kalluri R., Weinberg R. A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428. 10.1172/JCI39104 PubMed DOI PMC
Katsura A., Tamura Y., Hokari S., Harada M., Morikawa M., Sakurai T., et al. . (2017). ZEB1-regulated inflammatory phenotype in breast cancer cells. Mol. Oncol. 11, 1241–1262. 10.1002/1878-0261.12098 PubMed DOI PMC
Khanbabaei H., Teimoori A., Mohammadi M. (2016). The interplay between microRNAs and twist1 transcription factor: a systematic review. Tumour Biol. 37, 7007–7019. 10.1007/s13277-016-4960-y PubMed DOI
Kim C., Hong Y., Lee H., Kang H., Lee E. K. (2018). MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil. Cancer Lett. 412, 264–271. 10.1016/j.canlet.2017.10.022 PubMed DOI
Kim T., Veronese A., Pichiorri F., Lee T. J., Jeon Y. J., Volinia S., et al. . (2011). P53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875–883. 10.1084/jem.20110235 PubMed DOI PMC
Krebs A. M., Mitschke J., Lasierra Losada M., Schmalhofer O., Boerries M., Busch H., et al. . (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529. 10.1038/ncb3513 PubMed DOI
Lehmann W., Mossmann D., Kleemann J., Mock K., Meisinger C., Brummer T., et al. . (2016). ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7:10498. 10.1038/ncomms10498 PubMed DOI PMC
Lezina L., Purmessur N., Antonov A. V., Ivanova T., Karpova E., Krishan K., et al. . (2013). MiR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis. 4:e953. 10.1038/cddis.2013.483 PubMed DOI PMC
Li X., Lewis M. T., Huang J., Gutierrez C., Osborne C. K., Wu M. F., et al. . (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679. 10.1093/jnci/djn123 PubMed DOI
Lin Y., Bai X., Zhou W., He Y., Wu Y., Wang X. (2018). Radiation exposure triggers the progression of triple negative breast cancer via stabilizing ZEB1. Biomed. Pharmacother. 107, 1624–1630. 10.1016/j.biopha.2018.08.026 PubMed DOI
Liu G., Yang D., Rupaimoole R., Pecot C. V., Sun Y., Mangala L. S., et al. . (2015). Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J. Natl. Cancer Inst. 107, 1236–1247. 10.1093/jnci/djv108 PubMed DOI PMC
Lu M., Jolly M. K., Levine H., Onuchic J. N., Ben-Jacob E. (2013). MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. U.S.A. 110, 18144–18149. 10.1073/pnas.1318192110 PubMed DOI PMC
Mani S. A., Guo W., Liao M. J., Eaton E. N., Ayyanan A., Zhou A. Y., et al. . (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715. 10.1016/j.cell.2008.03.027 PubMed DOI PMC
Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., et al. . (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446. 10.1126/science.1202723 PubMed DOI PMC
Maturi V., Enroth S., Heldin C. H., Moustakas A. (2018). Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. J. Cell. Physiol. 233, 7113–7127. 10.1002/jcp.26634 PubMed DOI PMC
Meidhof S., Brabletz S., Lehmann W., Preca B. T., Mock K., Ruh M., et al. . (2015). ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 7, 831–847. 10.15252/emmm.201404396 PubMed DOI PMC
Morel A. P., Ginestier C., Pommier R. M., Cabaud O., Ruiz E., Wicinski J., et al. . (2017). A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat. Med. 23, 568–578. 10.1038/nm.4323 PubMed DOI
Nishino H., Takano S., Yoshitomi H., Suzuki K., Kagawa S., Shimazaki R., et al. . (2017). Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med. 6, 2686–2696. 10.1002/cam4.1212 PubMed DOI PMC
Orellana-Serradell O., Herrera D., Castellon E. A., Contreras H. R. (2019). The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl. 21, 460–467. 10.4103/aja.aja_1_19 PubMed DOI PMC
Postigo A. A., Depp J. L., Taylor J. J., Kroll K. L. (2003). Regulation of smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22, 2453–2462. 10.1093/emboj/cdg226 PubMed DOI PMC
Pouliot L. M., Chen Y. C., Bai J., Guha R., Martin S. E., Gottesman M. M., et al. . (2012). Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 72, 5945–5955. 10.1158/0008-5472.CAN-12-1400 PubMed DOI PMC
Preca B. T., Bajdak K., Mock K., Lehmann W., Sundararajan V., Bronsert P., et al. . (2017). A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8, 11530–11543. 10.18632/oncotarget.14563 PubMed DOI PMC
Preca B. T., Bajdak K., Mock K., Sundararajan V., Pfannstiel J., Maurer J., et al. . (2015). A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int. J. Cancer 137, 2566–2577. 10.1002/ijc.29642 PubMed DOI
Ren D., Wang M., Guo W., Zhao X., Tu X., Huang S., et al. . (2013). Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145. Int. J. Oncol. 42, 1473–1481. 10.3892/ijo.2013.1825 PubMed DOI
Ren J., Chen Y., Song H., Chen L., Wang R. (2013). Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J. Cell Biochem. 114, 1395–1403. 10.1002/jcb.24481 PubMed DOI
Richard G., Dalle S., Monet M. A., Ligier M., Boespflug A., Pommier R. M., et al. . (2016). ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol. Med. 8, 1143–1161. 10.15252/emmm.201505971 PubMed DOI PMC
Sakata J., Utsumi F., Suzuki S., Niimi K., Yamamoto E., Shibata K., et al. . (2017). Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget 8, 99482–99494. 10.18632/oncotarget.20107 PubMed DOI PMC
Saxena M., Stephens M. A., Pathak H., Rangarajan A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2:e179. 10.1038/cddis.2011.61 PubMed DOI PMC
Schubert J., Brabletz T. (2011). P53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res. 21, 705–707. 10.1038/cr.2011.62 PubMed DOI PMC
Shibue T., Weinberg R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629. 10.1038/nrclinonc.2017.44 PubMed DOI PMC
Siebzehnrubl F. A., Silver D. J., Tugertimur B., Deleyrolle L. P., Siebzehnrubl D., Sarkisian M. R., et al. . (2013). The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5, 1196–1212. 10.1002/emmm.201302827 PubMed DOI PMC
Siemens H., Jackstadt R., Hunten S., Kaller M., Menssen A., Gotz U., et al. . (2011). MiR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271. 10.4161/cc.10.24.18552 PubMed DOI
Singh A., Settleman J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751. 10.1038/onc.2010.215 PubMed DOI PMC
Somarelli J. A., Shetler S., Jolly M. K., Wang X., Bartholf Dewitt S., Hish A. J., et al. . (2016). Mesenchymal-Epithelial transition in sarcomas is controlled by the combinatorial expression of MicroRNA 200s and GRHL2. Mol. Cell. Biol. 36, 2503–2513. 10.1128/MCB.00373-16 PubMed DOI PMC
Song N., Jing W., Li C., Bai M., Cheng Y., Li H., et al. . (2018). ZEB1 inhibition sensitizes cells to the ATR inhibitor VE-821 by abrogating epithelial-mesenchymal transition and enhancing DNA damage. Cell Cycle 17, 595–604. 10.1080/15384101.2017.1404206 PubMed DOI PMC
Song X. F., Chang H., Liang Q., Guo Z. F., Wu J. W. (2017). ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 4032–4038. PubMed
Spike B. T., Wahl G. M. (2011). P53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2, 404–419. 10.1177/1947601911410224 PubMed DOI PMC
Svirnovski A. I., Serhiyenka T. F., Kustanovich A. M., Khlebko P. V., Fedosenko V. V., Taras I. B., et al. . (2010). DNA-PK, ATM and MDR proteins inhibitors in overcoming fludarabine resistance in CLL cells. Exp. Oncol. 32, 258–262. PubMed
Tian Y., Pan Q., Shang Y., Zhu R., Ye J., Liu Y., et al. . (2014). MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells. J. Biol. Chem. 289, 36101–36115. 10.1074/jbc.M114.598383 PubMed DOI PMC
Vandewalle C., Van Roy F., Berx G. (2009). The role of the ZEB family of transcription factors in development and disease. Cell Mol. Life Sci. 66, 773–787. 10.1007/s00018-008-8465-8 PubMed DOI PMC
Voulgari A., Pintzas A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796, 75–90. 10.1016/j.bbcan.2009.03.002 PubMed DOI
Wang H., Naghavi M., Allen C., Barber R., Bhutta Z., Carter A., et al. . (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 1459–1544. 10.1016/S0140-6736(16)31012-1 PubMed DOI PMC
Wang Z., Chen Y., Lin Y., Wang X., Cui X., Zhang Z., et al. . (2017). Novel crosstalk between KLF4 and ZEB1 regulates gemcitabine resistance in pancreatic ductal adenocarcinoma. Int. J. Oncol. 51, 1239–1248. 10.3892/ijo.2017.4099 PubMed DOI
Watanabe K., Panchy N., Noguchi S., Suzuki H., Hong T. (2019). Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition. NPJ Syst. Biol. Appl. 5:21. 10.1038/s41540-019-0097-0 PubMed DOI PMC
Werth M., Walentin K., Aue A., Schonheit J., Wuebken A., Pode-Shakked N., et al. . (2010). The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 137, 3835–3845. 10.1242/dev.055483 PubMed DOI
Wu Y., Jin D., Wang X., Du J., Di W., An J., et al. . (2019a). UBE2C induces cisplatin resistance via ZEB1/2-dependent upregulation of ABCG2 and ERCC1 in NSCLC cells. J. Oncol. 2019:8607859. 10.1155/2019/8607859 PubMed DOI PMC
Wu Y., Yang X., Chen Z., Tian L., Jiang G., Chen F., et al. . (2019b). M(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol. Cancer 18:87. 10.1186/s12943-019-1014-2 PubMed DOI PMC
Xu J., Li Y., Wang F., Wang X., Cheng B., Ye F., et al. . (2013). Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene 32, 976–987. 10.1038/onc.2012.121 PubMed DOI
Xu L., Zhang Y., Qu X., Che X., Guo T., Cai Y., et al. . (2017). E3 ubiquitin ligase Cbl-b prevents tumor metastasis by maintaining the epithelial phenotype in multiple drug-resistant gastric and breast cancer cells. Neoplasia 19, 374–382. 10.1016/j.neo.2017.01.011 PubMed DOI PMC
Xu M., Zhu C., Zhao X., Chen C., Zhang H., Yuan H., et al. . (2015). Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 6, 979–994. 10.18632/oncotarget.2825 PubMed DOI PMC
Yang J., Weinberg R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829. 10.1016/j.devcel.2008.05.009 PubMed DOI
Yang X., Li L., Huang Q., Xu W., Cai X., Zhang J., et al. . (2015). Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am. J. Cancer Res. 5, 748–755. PubMed PMC
Yin Y., Liu W., Shen Q., Zhang P., Wang L., Tao R., et al. . (2019). The DNA endonuclease Mus81 regulates ZEB1 expression and serves as a target of BET4 inhibitors in gastric cancer. Mol. Cancer Ther. 18, 1439–1450. 10.1158/1535-7163.MCT-18-0833 PubMed DOI PMC
Zhang J., Ma L. (2012). MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 31, 653–662. 10.1007/s10555-012-9368-6 PubMed DOI PMC
Zhang P., Sun Y., Ma L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487. 10.1080/15384101.2015.1006048 PubMed DOI PMC
Zhang P., Wang L., Rodriguez-Aguayo C., Yuan Y., Debeb B. G., Chen D., et al. . (2014a). MiR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat. Commun. 5:5671. 10.1038/ncomms6671 PubMed DOI PMC
Zhang P., Wei Y., Wang L., Debeb B. G., Yuan Y., Zhang J., et al. . (2014b). ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16, 864–875. 10.1038/ncb3013 PubMed DOI PMC
Zhang S., Tang Z., Qing B., Tang R., Duan Q., Ding S., et al. . (2019). Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1. Eur. J. Pharmacol. 865:172745. 10.1016/j.ejphar.2019.172745 PubMed DOI
Zhang X., Zhang Z., Zhang Q., Sun P., Xiang R., Ren G., et al. . (2018). ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis. 9:57. 10.1038/s41419-017-0087-3 PubMed DOI PMC
Zhang Y., Xu L., Li A., Han X. (2019). The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed. Pharmacother. 110, 400–408. 10.1016/j.biopha.2018.11.112 PubMed DOI
Zhang Z., Yin J., Lu C., Wei Y., Zeng A., You Y. (2019). Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J. Exp. Clin. Cancer Res. 38:166. 10.1186/s13046-019-1139-6 PubMed DOI PMC
Zheng X., Carstens J. L., Kim J., Scheible M., Kaye J., Sugimoto H., et al. . (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530. 10.1038/nature16064 PubMed DOI PMC
Zhou Y., Zhu Y., Fan X., Zhang C., Wang Y., Zhang L., et al. . (2017). NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget 8, 33110–33121. 10.18632/oncotarget.16145 PubMed DOI PMC
Zhou Z., Zhang P., Hu X., Kim J., Yao F., Xiao Z., et al. . (2017). USP51 promotes deubiquitination and stabilization of ZEB1. Am. J. Cancer Res. 7, 2020–2031. PubMed PMC