ZEB1: A Critical Regulator of Cell Plasticity, DNA Damage Response, and Therapy Resistance

. 2020 ; 7 () : 36. [epub] 20200319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32266287

The predominant way in which conventional chemotherapy kills rapidly proliferating cancer cells is the induction of DNA damage. However, chemoresistance remains the main obstacle to therapy effectivity. An increasing number of studies suggest that epithelial-to-mesenchymal transition (EMT) represents a critical process affecting the sensitivity of cancer cells to chemotherapy. Zinc finger E-box binding homeobox 1 (ZEB1) is a prime element of a network of transcription factors controlling EMT and has been identified as an important molecule in the regulation of DNA damage, cancer cell differentiation, and metastasis. Recent studies have considered upregulation of ZEB1 as a potential modulator of chemoresistance. It has been hypothesized that cancer cells undergoing EMT acquire unique properties that resemble those of cancer stem cells (CSCs). These stem-like cells manifest enhanced DNA damage response (DDR) and DNA repair capacity, self-renewal, or chemoresistance. In contrast, functional experiments have shown that ZEB1 induces chemoresistance regardless of whether other EMT-related changes occur. ZEB1 has also been identified as an important regulator of DDR by the formation of a ZEB1/p300/PCAF complex and direct interaction with ATM kinase, which has been linked to radioresistance. Moreover, ATM can directly phosphorylate ZEB1 and enhance its stability. Downregulation of ZEB1 has also been shown to reduce the abundance of CHK1, an effector kinase of DDR activated by ATR, and to induce its ubiquitin-dependent degradation. In this perspective, we focus on the role of ZEB1 in the regulation of DDR and describe the mechanisms of ZEB1-dependent chemoresistance.

Zobrazit více v PubMed

Bao S., Wu Q., Mclendon R. E., Hao Y., Shi Q., Hjelmeland A. B., et al. . (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760. 10.1038/nature05236 PubMed DOI

Bermudez M., Aguilar-Medina M., Lizarraga-Verdugo E., Avendano-Felix M., Silva-Benitez E., Lopez-Camarillo C., et al. . (2019). LncRNAs as regulators of autophagy and drug resistance in colorectal cancer. Front. Oncol. 9:1008. 10.3389/fonc.2019.01008 PubMed DOI PMC

Brabletz S., Brabletz T. (2010). The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677. 10.1038/embor.2010.117 PubMed DOI PMC

Brabletz T. (2012). To differentiate or not–routes towards metastasis. Nat. Rev. Cancer 12, 425–436. 10.1038/nrc3265 PubMed DOI

Brabletz T., Kalluri R., Nieto M. A., Weinberg R. A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128–134. 10.1038/nrc.2017.118 PubMed DOI

Bracken C. P., Li X., Wright J. A., Lawrence D. M., Pillman K. A., Salmanidis M., et al. . (2014). Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J. 33, 2040–2056. 10.15252/embj.201488641 PubMed DOI PMC

Bullock M. D., Sayan A. E., Packham G. K., Mirnezami A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol. Cell 104, 3–12. 10.1111/boc.201100115 PubMed DOI

Burk U., Schubert J., Wellner U., Schmalhofer O., Vincan E., Spaderna S., et al. . (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589. 10.1038/embor.2008.74 PubMed DOI PMC

Caramel J., Ligier M., Puisieux A. (2018). Pleiotropic roles for ZEB1 in Cancer. Cancer Res. 78, 30–35. 10.1158/0008-5472.CAN-17-2476 PubMed DOI

Carey L. A., Dees E. C., Sawyer L., Gatti L., Moore D. T., Collichio F., et al. . (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334. 10.1158/1078-0432.CCR-06-1109 PubMed DOI

Carpenter R. A., Kwak J. G., Peyton S. R., Lee J. (2018). Implantable pre-metastatic niches for the study of the microenvironmental regulation of disseminated human tumour cells. Nat. Biomed. Eng. 2, 915–929. 10.1038/s41551-018-0307-x PubMed DOI PMC

Celia-Terrassa T., Bastian C., Liu D. D., Ell B., Aiello N. M., Wei Y., et al. . (2018). Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat. Commun. 9:5005. 10.1038/s41467-018-07538-7 PubMed DOI PMC

Chang C. J., Chao C. H., Xia W., Yang J. Y., Xiong Y., Li C. W., et al. . (2011). P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323. 10.1038/ncb2173 PubMed DOI PMC

Chen J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 6:a026104. 10.1101/cshperspect.a026104 PubMed DOI PMC

Chen X., Chen Z., Yu S., Nie F., Yan S., Ma P., et al. . (2018). Long noncoding RNA LINC01234 functions as a competing endogenous RNA to regulate CBFB expression by sponging miR-204-5p in gastric cancer. Clin. Cancer Res. 24, 2002–2014. 10.1158/1078-0432.CCR-17-2376 PubMed DOI

Chua H. L., Bhat-Nakshatri P., Clare S. E., Morimiya A., Badve S., Nakshatri H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724. 10.1038/sj.onc.1209808 PubMed DOI

Chung V. Y., Tan T. Z., Ye J., Huang R. L., Lai H. C., Kappei D., et al. . (2019). The role of GRHL2 and epigenetic remodeling in epithelial-mesenchymal plasticity in ovarian cancer cells. Commun. Biol. 2:272. 10.1038/s42003-019-0506-3 PubMed DOI PMC

Cieply B., Riley P. T., Pifer P. M., Widmeyer J., Addison J. B., Ivanov A. V., et al. . (2012). Suppression of the epithelial-mesenchymal transition by grainyhead-like-2. Cancer Res. 72, 2440–2453. 10.1158/0008-5472.CAN-11-4038 PubMed DOI PMC

Cochrane D. R., Spoelstra N. S., Howe E. N., Nordeen S. K., Richer J. K. (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol. Cancer Ther. 8, 1055–1066. 10.1158/1535-7163.MCT-08-1046 PubMed DOI PMC

Cui Y., Qin L., Tian D., Wang T., Fan L., Zhang P., et al. . (2018). ZEB1 promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy 63, 262–271. 10.1159/000493864 PubMed DOI

De Cock J. M., Shibue T., Dongre A., Keckesova Z., Reinhardt F., Weinberg R. A. (2016). Inflammation triggers Zeb1-Dependent escape from tumor latency. Cancer Res. 76, 6778–6784. 10.1158/0008-5472.CAN-16-0608 PubMed DOI PMC

El Bezawy R., Cominetti D., Fenderico N., Zuco V., Beretta G. L., Dugo M., et al. . (2017). MiR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett. 395, 53–62. 10.1016/j.canlet.2017.02.033 PubMed DOI

El Bezawy R., Tinelli S., Tortoreto M., Doldi V., Zuco V., Folini M., et al. . (2019). MiR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. J. Exp. Clin. Cancer Res. 38:51. 10.1186/s13046-019-1060-z PubMed DOI PMC

Figiel S., Vasseur C., Bruyere F., Rozet F., Maheo K., Fromont G. (2017). Clinical significance of epithelial-mesenchymal transition markers in prostate cancer. Hum. Pathol. 61, 26–32. 10.1016/j.humpath.2016.10.013 PubMed DOI

Fischer K. R., Durrans A., Lee S., Sheng J., Li F., Wong S. T., et al. . (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476. 10.1038/nature15748 PubMed DOI PMC

Fu D., Huang Y., Gao M. (2019). Hsa_circ_0057481 promotes laryngeal cancer proliferation and migration by modulating the miR-200c/ZEB1 axis. Int. J. Clin. Exp. Pathol. 12, 4066–4076. PubMed PMC

Galvan J. A., Zlobec I., Wartenberg M., Lugli A., Gloor B., Perren A., et al. . (2015). Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Br. J. Cancer 112, 1944–1950. 10.1038/bjc.2015.177 PubMed DOI PMC

Giacomelli C., Daniele S., Natali L., Iofrida C., Flamini G., Braca A., et al. . (2017). Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci. Rep. 7:15174. 10.1038/s41598-017-15360-2 PubMed DOI PMC

Gregory P. A., Bert A. G., Paterson E. L., Barry S. C., Tsykin A., Farshid G., et al. . (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601. 10.1038/ncb1722 PubMed DOI

Han Y., Luo Y., Wang Y., Chen Y., Li M., Jiang Y. (2016). Hepatocyte growth factor increases the invasive potential of PC-3 human prostate cancer cells via an ERK/MAPK and Zeb-1 signaling pathway. Oncol. Lett. 11, 753–759. 10.3892/ol.2015.3943 PubMed DOI PMC

Hanrahan K., O'neill A., Prencipe M., Bugler J., Murphy L., Fabre A., et al. . (2017). The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol. 11, 251–265. 10.1002/1878-0261.12030 PubMed DOI PMC

Hay E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat. 154, 8–20. 10.1159/000147748 PubMed DOI

Her N. G., Oh J. W., Oh Y. J., Han S., Cho H. J., Lee Y., et al. . (2018). Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 9:792. 10.1038/s41419-018-0825-1 PubMed DOI PMC

Horiguchi K., Sakamoto K., Koinuma D., Semba K., Inoue A., Inoue S., et al. . (2012). TGF-β drives epithelial-mesenchymal transition through deltaEF1-mediated downregulation of ESRP. Oncogene 31, 3190–3201. 10.1038/onc.2011.493 PubMed DOI PMC

Huang R. Y., Wong M. K., Tan T. Z., Kuay K. T., Ng A. H., Chung V. Y., et al. . (2013). An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4:e915. 10.1038/cddis.2013.442 PubMed DOI PMC

Huarte M. (2015). The emerging role of lncRNAs in cancer. Nat. Med. 21, 1253–1261. 10.1038/nm.3981 PubMed DOI

Hurteau G. J., Carlson J. A., Spivack S. D., Brock G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67, 7972–7976. 10.1158/0008-5472.CAN-07-1058 PubMed DOI

Izutsu N., Maesawa C., Shibazaki M., Oikawa H., Shoji T., Sugiyama T., et al. . (2008). Epigenetic modification is involved in aberrant expression of class III beta-tubulin, TUBB3, in ovarian cancer cells. Int. J. Oncol. 32, 1227–1235. 10.3892/ijo_32_6_1227 PubMed DOI

Jia W., Deshmukh A., Mani S. A., Jolly M. K., Levine H. (2019). A possible role for epigenetic feedback regulation in the dynamics of the epithelial-mesenchymal transition (EMT). Phys. Biol. 16:066004. 10.1088/1478-3975/ab34df PubMed DOI PMC

Jolly M. K., Preca B. T., Tripathi S. C., Jia D., George J. T., Hanash S. M., et al. . (2018). Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng. 2:031908. 10.1063/1.5024874 PubMed DOI PMC

Jolly M. K., Tripathi S. C., Jia D., Mooney S. M., Celiktas M., Hanash S. M., et al. . (2016). Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7, 27067–27084. 10.18632/oncotarget.8166 PubMed DOI PMC

Joseph J. V., Conroy S., Tomar T., Eggens-Meijer E., Bhat K., Copray S., et al. . (2014). TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis. 5:e1443. 10.1038/cddis.2014.395 PubMed DOI PMC

Kahlert U. D., Maciaczyk D., Doostkam S., Orr B. A., Simons B., Bogiel T., et al. . (2012). Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett. 325, 42–53. 10.1016/j.canlet.2012.05.024 PubMed DOI

Kalluri R., Weinberg R. A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428. 10.1172/JCI39104 PubMed DOI PMC

Katsura A., Tamura Y., Hokari S., Harada M., Morikawa M., Sakurai T., et al. . (2017). ZEB1-regulated inflammatory phenotype in breast cancer cells. Mol. Oncol. 11, 1241–1262. 10.1002/1878-0261.12098 PubMed DOI PMC

Khanbabaei H., Teimoori A., Mohammadi M. (2016). The interplay between microRNAs and twist1 transcription factor: a systematic review. Tumour Biol. 37, 7007–7019. 10.1007/s13277-016-4960-y PubMed DOI

Kim C., Hong Y., Lee H., Kang H., Lee E. K. (2018). MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil. Cancer Lett. 412, 264–271. 10.1016/j.canlet.2017.10.022 PubMed DOI

Kim T., Veronese A., Pichiorri F., Lee T. J., Jeon Y. J., Volinia S., et al. . (2011). P53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875–883. 10.1084/jem.20110235 PubMed DOI PMC

Krebs A. M., Mitschke J., Lasierra Losada M., Schmalhofer O., Boerries M., Busch H., et al. . (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529. 10.1038/ncb3513 PubMed DOI

Lehmann W., Mossmann D., Kleemann J., Mock K., Meisinger C., Brummer T., et al. . (2016). ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7:10498. 10.1038/ncomms10498 PubMed DOI PMC

Lezina L., Purmessur N., Antonov A. V., Ivanova T., Karpova E., Krishan K., et al. . (2013). MiR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis. 4:e953. 10.1038/cddis.2013.483 PubMed DOI PMC

Li X., Lewis M. T., Huang J., Gutierrez C., Osborne C. K., Wu M. F., et al. . (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679. 10.1093/jnci/djn123 PubMed DOI

Lin Y., Bai X., Zhou W., He Y., Wu Y., Wang X. (2018). Radiation exposure triggers the progression of triple negative breast cancer via stabilizing ZEB1. Biomed. Pharmacother. 107, 1624–1630. 10.1016/j.biopha.2018.08.026 PubMed DOI

Liu G., Yang D., Rupaimoole R., Pecot C. V., Sun Y., Mangala L. S., et al. . (2015). Augmentation of response to chemotherapy by microRNA-506 through regulation of RAD51 in serous ovarian cancers. J. Natl. Cancer Inst. 107, 1236–1247. 10.1093/jnci/djv108 PubMed DOI PMC

Lu M., Jolly M. K., Levine H., Onuchic J. N., Ben-Jacob E. (2013). MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. U.S.A. 110, 18144–18149. 10.1073/pnas.1318192110 PubMed DOI PMC

Mani S. A., Guo W., Liao M. J., Eaton E. N., Ayyanan A., Zhou A. Y., et al. . (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715. 10.1016/j.cell.2008.03.027 PubMed DOI PMC

Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., et al. . (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446. 10.1126/science.1202723 PubMed DOI PMC

Maturi V., Enroth S., Heldin C. H., Moustakas A. (2018). Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells. J. Cell. Physiol. 233, 7113–7127. 10.1002/jcp.26634 PubMed DOI PMC

Meidhof S., Brabletz S., Lehmann W., Preca B. T., Mock K., Ruh M., et al. . (2015). ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 7, 831–847. 10.15252/emmm.201404396 PubMed DOI PMC

Morel A. P., Ginestier C., Pommier R. M., Cabaud O., Ruiz E., Wicinski J., et al. . (2017). A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat. Med. 23, 568–578. 10.1038/nm.4323 PubMed DOI

Nishino H., Takano S., Yoshitomi H., Suzuki K., Kagawa S., Shimazaki R., et al. . (2017). Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Med. 6, 2686–2696. 10.1002/cam4.1212 PubMed DOI PMC

Orellana-Serradell O., Herrera D., Castellon E. A., Contreras H. R. (2019). The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J. Androl. 21, 460–467. 10.4103/aja.aja_1_19 PubMed DOI PMC

Postigo A. A., Depp J. L., Taylor J. J., Kroll K. L. (2003). Regulation of smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22, 2453–2462. 10.1093/emboj/cdg226 PubMed DOI PMC

Pouliot L. M., Chen Y. C., Bai J., Guha R., Martin S. E., Gottesman M. M., et al. . (2012). Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 72, 5945–5955. 10.1158/0008-5472.CAN-12-1400 PubMed DOI PMC

Preca B. T., Bajdak K., Mock K., Lehmann W., Sundararajan V., Bronsert P., et al. . (2017). A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast cancer. Oncotarget 8, 11530–11543. 10.18632/oncotarget.14563 PubMed DOI PMC

Preca B. T., Bajdak K., Mock K., Sundararajan V., Pfannstiel J., Maurer J., et al. . (2015). A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int. J. Cancer 137, 2566–2577. 10.1002/ijc.29642 PubMed DOI

Ren D., Wang M., Guo W., Zhao X., Tu X., Huang S., et al. . (2013). Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145. Int. J. Oncol. 42, 1473–1481. 10.3892/ijo.2013.1825 PubMed DOI

Ren J., Chen Y., Song H., Chen L., Wang R. (2013). Inhibition of ZEB1 reverses EMT and chemoresistance in docetaxel-resistant human lung adenocarcinoma cell line. J. Cell Biochem. 114, 1395–1403. 10.1002/jcb.24481 PubMed DOI

Richard G., Dalle S., Monet M. A., Ligier M., Boespflug A., Pommier R. M., et al. . (2016). ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol. Med. 8, 1143–1161. 10.15252/emmm.201505971 PubMed DOI PMC

Sakata J., Utsumi F., Suzuki S., Niimi K., Yamamoto E., Shibata K., et al. . (2017). Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget 8, 99482–99494. 10.18632/oncotarget.20107 PubMed DOI PMC

Saxena M., Stephens M. A., Pathak H., Rangarajan A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2:e179. 10.1038/cddis.2011.61 PubMed DOI PMC

Schubert J., Brabletz T. (2011). P53 spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res. 21, 705–707. 10.1038/cr.2011.62 PubMed DOI PMC

Shibue T., Weinberg R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629. 10.1038/nrclinonc.2017.44 PubMed DOI PMC

Siebzehnrubl F. A., Silver D. J., Tugertimur B., Deleyrolle L. P., Siebzehnrubl D., Sarkisian M. R., et al. . (2013). The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5, 1196–1212. 10.1002/emmm.201302827 PubMed DOI PMC

Siemens H., Jackstadt R., Hunten S., Kaller M., Menssen A., Gotz U., et al. . (2011). MiR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271. 10.4161/cc.10.24.18552 PubMed DOI

Singh A., Settleman J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751. 10.1038/onc.2010.215 PubMed DOI PMC

Somarelli J. A., Shetler S., Jolly M. K., Wang X., Bartholf Dewitt S., Hish A. J., et al. . (2016). Mesenchymal-Epithelial transition in sarcomas is controlled by the combinatorial expression of MicroRNA 200s and GRHL2. Mol. Cell. Biol. 36, 2503–2513. 10.1128/MCB.00373-16 PubMed DOI PMC

Song N., Jing W., Li C., Bai M., Cheng Y., Li H., et al. . (2018). ZEB1 inhibition sensitizes cells to the ATR inhibitor VE-821 by abrogating epithelial-mesenchymal transition and enhancing DNA damage. Cell Cycle 17, 595–604. 10.1080/15384101.2017.1404206 PubMed DOI PMC

Song X. F., Chang H., Liang Q., Guo Z. F., Wu J. W. (2017). ZEB1 promotes prostate cancer proliferation and invasion through ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 4032–4038. PubMed

Spike B. T., Wahl G. M. (2011). P53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2, 404–419. 10.1177/1947601911410224 PubMed DOI PMC

Svirnovski A. I., Serhiyenka T. F., Kustanovich A. M., Khlebko P. V., Fedosenko V. V., Taras I. B., et al. . (2010). DNA-PK, ATM and MDR proteins inhibitors in overcoming fludarabine resistance in CLL cells. Exp. Oncol. 32, 258–262. PubMed

Tian Y., Pan Q., Shang Y., Zhu R., Ye J., Liu Y., et al. . (2014). MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells. J. Biol. Chem. 289, 36101–36115. 10.1074/jbc.M114.598383 PubMed DOI PMC

Vandewalle C., Van Roy F., Berx G. (2009). The role of the ZEB family of transcription factors in development and disease. Cell Mol. Life Sci. 66, 773–787. 10.1007/s00018-008-8465-8 PubMed DOI PMC

Voulgari A., Pintzas A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta 1796, 75–90. 10.1016/j.bbcan.2009.03.002 PubMed DOI

Wang H., Naghavi M., Allen C., Barber R., Bhutta Z., Carter A., et al. . (2016). Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 1459–1544. 10.1016/S0140-6736(16)31012-1 PubMed DOI PMC

Wang Z., Chen Y., Lin Y., Wang X., Cui X., Zhang Z., et al. . (2017). Novel crosstalk between KLF4 and ZEB1 regulates gemcitabine resistance in pancreatic ductal adenocarcinoma. Int. J. Oncol. 51, 1239–1248. 10.3892/ijo.2017.4099 PubMed DOI

Watanabe K., Panchy N., Noguchi S., Suzuki H., Hong T. (2019). Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition. NPJ Syst. Biol. Appl. 5:21. 10.1038/s41540-019-0097-0 PubMed DOI PMC

Werth M., Walentin K., Aue A., Schonheit J., Wuebken A., Pode-Shakked N., et al. . (2010). The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 137, 3835–3845. 10.1242/dev.055483 PubMed DOI

Wu Y., Jin D., Wang X., Du J., Di W., An J., et al. . (2019a). UBE2C induces cisplatin resistance via ZEB1/2-dependent upregulation of ABCG2 and ERCC1 in NSCLC cells. J. Oncol. 2019:8607859. 10.1155/2019/8607859 PubMed DOI PMC

Wu Y., Yang X., Chen Z., Tian L., Jiang G., Chen F., et al. . (2019b). M(6)A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol. Cancer 18:87. 10.1186/s12943-019-1014-2 PubMed DOI PMC

Xu J., Li Y., Wang F., Wang X., Cheng B., Ye F., et al. . (2013). Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene 32, 976–987. 10.1038/onc.2012.121 PubMed DOI

Xu L., Zhang Y., Qu X., Che X., Guo T., Cai Y., et al. . (2017). E3 ubiquitin ligase Cbl-b prevents tumor metastasis by maintaining the epithelial phenotype in multiple drug-resistant gastric and breast cancer cells. Neoplasia 19, 374–382. 10.1016/j.neo.2017.01.011 PubMed DOI PMC

Xu M., Zhu C., Zhao X., Chen C., Zhang H., Yuan H., et al. . (2015). Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 6, 979–994. 10.18632/oncotarget.2825 PubMed DOI PMC

Yang J., Weinberg R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829. 10.1016/j.devcel.2008.05.009 PubMed DOI

Yang X., Li L., Huang Q., Xu W., Cai X., Zhang J., et al. . (2015). Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer. Am. J. Cancer Res. 5, 748–755. PubMed PMC

Yin Y., Liu W., Shen Q., Zhang P., Wang L., Tao R., et al. . (2019). The DNA endonuclease Mus81 regulates ZEB1 expression and serves as a target of BET4 inhibitors in gastric cancer. Mol. Cancer Ther. 18, 1439–1450. 10.1158/1535-7163.MCT-18-0833 PubMed DOI PMC

Zhang J., Ma L. (2012). MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 31, 653–662. 10.1007/s10555-012-9368-6 PubMed DOI PMC

Zhang P., Sun Y., Ma L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14, 481–487. 10.1080/15384101.2015.1006048 PubMed DOI PMC

Zhang P., Wang L., Rodriguez-Aguayo C., Yuan Y., Debeb B. G., Chen D., et al. . (2014a). MiR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat. Commun. 5:5671. 10.1038/ncomms6671 PubMed DOI PMC

Zhang P., Wei Y., Wang L., Debeb B. G., Yuan Y., Zhang J., et al. . (2014b). ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16, 864–875. 10.1038/ncb3013 PubMed DOI PMC

Zhang S., Tang Z., Qing B., Tang R., Duan Q., Ding S., et al. . (2019). Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1. Eur. J. Pharmacol. 865:172745. 10.1016/j.ejphar.2019.172745 PubMed DOI

Zhang X., Zhang Z., Zhang Q., Sun P., Xiang R., Ren G., et al. . (2018). ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis. 9:57. 10.1038/s41419-017-0087-3 PubMed DOI PMC

Zhang Y., Xu L., Li A., Han X. (2019). The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomed. Pharmacother. 110, 400–408. 10.1016/j.biopha.2018.11.112 PubMed DOI

Zhang Z., Yin J., Lu C., Wei Y., Zeng A., You Y. (2019). Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J. Exp. Clin. Cancer Res. 38:166. 10.1186/s13046-019-1139-6 PubMed DOI PMC

Zheng X., Carstens J. L., Kim J., Scheible M., Kaye J., Sugimoto H., et al. . (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530. 10.1038/nature16064 PubMed DOI PMC

Zhou Y., Zhu Y., Fan X., Zhang C., Wang Y., Zhang L., et al. . (2017). NID1, a new regulator of EMT required for metastasis and chemoresistance of ovarian cancer cells. Oncotarget 8, 33110–33121. 10.18632/oncotarget.16145 PubMed DOI PMC

Zhou Z., Zhang P., Hu X., Kim J., Yao F., Xiao Z., et al. . (2017). USP51 promotes deubiquitination and stabilization of ZEB1. Am. J. Cancer Res. 7, 2020–2031. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity

. 2021 May 02 ; 13 (9) : . [epub] 20210502

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...