Occurrence, Seasonal Variation, and Size Resolved Distribution of Arsenic Species in Atmospheric Particulate Matter in an Urban Area in Southeastern Austria

. 2020 May 05 ; 54 (9) : 5532-5539. [epub] 20200421

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32294376

Extensive information is available on total arsenic in particulate matter (PM), but little is known about the relative contribution of each individual species. Recent studies often focus on inorganic arsenic as arsenite and arsenate, neglecting the organoarsenicals, i.e., methylarsine, dimethylarsine, and trimethylarsine or the corresponding oxidized forms methylarsonate, dimethylarsinate, and trimethylarsine oxide, although they were already first detected in PM in the mid-1970s. This work presents results from more than 300 daily PM10 and further size-resolved atmospheric PM samples in the size range from 15 nm to 10 μm collected in an urban environment in Austria during the course of a year. An ion-exchange-HPLC (with anion and cation exchange columns) and an ICPMS/MS system were used to study the seasonal variations of total arsenic and all species known to exist in PM. Inorganic arsenic was present in significant amounts in all samples with highest concentrations during winter, but also all organoarsenicals were detected throughout the year. We show that their contribution cannot be ignored, as particles smaller than <1 μm can contain up to 35% of the water+H2O2 extractable arsenic as methylated species, but only dimethylarsinate showed a clear seasonal trend throughout the year.

Zobrazit více v PubMed

Cullen W. R.Is Arsenic an Aphrodisiac?: the Sociochemistry of an Element; RSC Publ: Cambridge, 2008.

Jomova K.; Jenisova Z.; Feszterova M.; Baros S.; Liska J.; Hudecova D.; Rhodes C. J.; Valko M. Arsenic: toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. 10.1002/jat.1649. PubMed DOI

Duker A. A.; Carranza E. J. M.; Hale M. Arsenic geochemistry and health. Environ. Int. 2005, 31, 631–641. 10.1016/j.envint.2004.10.020. PubMed DOI

Nriagu J. O.; Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. 10.1038/333134a0. PubMed DOI

Gonzalez-Castanedo Y.; Sanchez-Rodas D.; Sanchez de la Campa A.M.; Pandolfi M.; Alastuey A.; Cachorro V.E.; Querol X.; de la Rosa J.D. Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain). Chemosphere 2015, 119, 1296–1303. 10.1016/j.chemosphere.2014.09.093. PubMed DOI

Mandal B. Arsenic round the world: A review. Talanta 2002, 58, 201–235. 10.1016/S0039-9140(02)00268-0. PubMed DOI

Johnson D. L.; Braman R. S. Alkyl- and inorganic arsenic in air samples. Chemosphere 1975, 4, 333–338. 10.1016/0045-6535(75)90027-2. DOI

Mukai H.; Ambe Y. Determination of methylarsenic compounds in airborne particulate matter by gas chromatography with atomic absorption spectrometry. Anal. Chim. Acta 1987, 193, 219–229. 10.1016/S0003-2670(00)86153-X. DOI

Mukai H.; Ambe Y.; Muku T.; Takeshita K.; Fukuma T. Seasonal variation of methylarsenic compounds in airborne participate matter. Nature 1986, 324, 239–241. 10.1038/324239a0. DOI

Lewis A. S.; Reid K. R.; Pollock M. C.; Campleman S. L. Speciated arsenic in air: Measurement methodology and risk assessment considerations. J. Air Waste Manage. Assoc. 2012, 62, 2–17. 10.1080/10473289.2011.608620. PubMed DOI

Tziaras T.; Pergantis S. A.; Stephanou E. G. Investigating the Occurrence and Environmental Significance of Methylated Arsenic Species in Atmospheric Particles by Overcoming Analytical Method Limitations. Environ. Sci. Technol. 2015, 49, 11640–11648. 10.1021/acs.est.5b02328. PubMed DOI

Francesconi K. A.; Kuehnelt D. Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 2004, 129, 373–395. 10.1039/B401321M. PubMed DOI

Maher W.; Krikowa F.; Ellwood M.; Raber G.; Foster S. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. J. Anal. At. Spectrom. 2015, 30, 2129–2183. 10.1039/C5JA00155B. DOI

Farinha M. M.; Šlejkovec Z.; van Elteren J. T.; Wolterbeek H. T.; Freitas M. C. Arsenic Speciation in Lichens and in Coarse and Fine Airborne Particulate Matter by HPLC–UV–HG–AFS. J. Atmos. Chem. 2004, 49, 343–353. 10.1007/s10874-004-1248-1. DOI

Sánchez de la Campa A. M.; de La Rosa J. D.; Sánchez-Rodas D.; Oliveira V.; Alastuey A.; Querol X.; Gómez Ariza J. L. Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos. Environ. 2008, 42, 6487–6495. 10.1016/j.atmosenv.2008.04.016. DOI

Sánchez-Rodas D.; Sánchez de la Campa A. M.; de la Rosa J. D.; Oliveira V.; Gómez-Ariza J. L.; Querol X.; Alastuey A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 2007, 66, 1485–1493. 10.1016/j.chemosphere.2006.08.043. PubMed DOI

Huang M.; Chen X.; Zhao Y.; Yu Chan C.; Wang W.; Wang X.; Wong M. H. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ. Pollut. 2014, 188, 37–44. 10.1016/j.envpol.2014.01.001. PubMed DOI

Jakob R.; Roth A.; Haas K.; Krupp E. M.; Raab A.; Smichowski P.; Gómez D.; Feldmann J. Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM10): evidence of the widespread phenomena of biovolatilization of arsenic. J. Environ. Monit. 2010, 12, 409–416. 10.1039/B915867G. PubMed DOI

Merijanian A.; Zingaro R. A. Arsine Oxides. Inorg. Chem. 1966, 5, 187–191. 10.1021/ic50036a005. DOI

Scheer J.; Findenig S.; Goessler W.; Francesconi K. A.; Howard B.; Umans J. G.; Pollak J.; Tellez-Plaza M.; Silbergeld E. K.; Guallar E.; Navas-Acien A. Arsenic species and selected metals in human urine: validation of HPLC/ICPMS and ICPMS procedures for a long-term population-based epidemiological study. Anal. Methods 2012, 4, 406–413. 10.1039/c2ay05638k. PubMed DOI PMC

Tanda S.; Ličbinský R.; Hegrová J.; Goessler W. Impact of New Year’s Eve fireworks on the size resolved element distributions in airborne particles. Environ. Int. 2019, 128, 371–378. 10.1016/j.envint.2019.04.071. PubMed DOI

Tanda S.; Ličbinský R.; Hegrová J.; Faimon J.; Goessler W. Arsenic speciation in aerosols of a respiratory therapeutic cave: A first approach to study arsenicals in ultrafine particles. Sci. Total Environ. 2019, 651, 1839–1848. 10.1016/j.scitotenv.2018.10.102. PubMed DOI

Kovačevič M.; Goessler W. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium. Spectrochim. Acta, Part B 2005, 60, 1357–1362. 10.1016/j.sab.2005.08.003. DOI

Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polcyclic aromatic hydrocarbons in ambient air: Directive 2004/107/EC, 2004, 11, 523.

Zevenhoven R.; Mukherjee A. B.; Bhattacharya P.. Arsenic flows in the environment of the European Union: a synoptic review. Arsenic in Soil and Groundwater Environment—Biogeochemical Interactions, Health Effects and Remediation; Trace Metals and other Contaminants in the Environment; Elsevier, 2007; pp 527–547.

Amt der Steiermärkischen Landesregierung, Fachabteilung 17C - Technische Umweltkontrolle, Referat Luftgüteüberwachung . PM10 Datenanalyse: Grobschätzung des PM10-Anteils von Verkehrs- und Hausbrandemissionen an Grazer Luftgütemessstationen; Graz, 2007.

Mukai H.; Ambe Y. Detection of monomethylarsenic compounds originating from pesticide in airborne particulate matter sampled in an agricultural area in Japan. Atmos. Environ. 1987, 21, 185–189. 10.1016/0004-6981(87)90284-8. DOI

Faust J. A.; Junninen H.; Ehn M.; Chen X.; Ruusuvuori K.; Kieloaho A.-J.; Bäck J.; Ojala A.; Jokinen T.; Worsnop D. R.; Kulmala M.; Petäjä T. Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environ. Sci. Technol. Lett. 2016, 3, 42–46. 10.1021/acs.estlett.5b00308. DOI

Lohila A.; Penttilä T.; Jortikka S.; Aalto T.; Anttila P.; Asmi E.; Aurela M.; Hatakka J.; Hellén H.; Henttonen H. Preface to the Special Issue on Integrated Research of Atmosphere, Ecosystems and Environment at Pallas. Boreal Environ. Res. 2015, 431–454.

Huang J.-H. Impact of Microorganisms on Arsenic Biogeochemistry: A Review. Water, Air, Soil Pollut. 2014, 225, 1120.10.1007/s11270-013-1848-y. DOI

Huang J.-H.; Hu K.-N.; Decker B. Organic Arsenic in the Soil Environment: Speciation, Occurrence, Transformation, and Adsorption Behavior. Water, Air, Soil Pollut. 2011, 219, 401–415. 10.1007/s11270-010-0716-2. DOI

Gorny J.; Billon G.; Lesven L.; Dumoulin D.; Madé B.; Noiriel C. Arsenic behavior in river sediments under redox gradient: a review. Sci. Total Environ. 2015, 505, 423–434. 10.1016/j.scitotenv.2014.10.011. PubMed DOI

Savage L.; Carey M.; Williams P. N.; Meharg A. A. Biovolatilization of Arsenic as Arsines from Seawater. Environ. Sci. Technol. 2018, 52, 3968–3974. 10.1021/acs.est.7b06456. PubMed DOI

Whitby K. T. The physical characteristics of sulfur aerosols. Atmos. Environ. 1978, 12, 135–159. 10.1016/0004-6981(78)90196-8. DOI

Parris G. E.; Brinckman F. E. Reactions which relate to environmental mobility of arsenic and antimony. Environ. Sci. Technol. 1976, 10, 1128–1134. 10.1021/es60122a010. PubMed DOI

Haas K.; Feldmann J. Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: a convenient method. Anal. Chem. 2000, 72, 4205–4211. 10.1021/ac000313c. PubMed DOI

Kapp R. W. Arsenic: Toxicology and Health Effects.. Encyclopedia of Food and Health; Elsevier 2016, 256–265. 10.1016/B978-0-12-384947-2.00043-X. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...