Occurrence, Seasonal Variation, and Size Resolved Distribution of Arsenic Species in Atmospheric Particulate Matter in an Urban Area in Southeastern Austria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32294376
PubMed Central
PMC7304873
DOI
10.1021/acs.est.9b07707
Knihovny.cz E-zdroje
- MeSH
- arsen analýza MeSH
- peroxid vodíku MeSH
- pevné částice MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rakousko MeSH
- Názvy látek
- arsen MeSH
- peroxid vodíku MeSH
- pevné částice MeSH
Extensive information is available on total arsenic in particulate matter (PM), but little is known about the relative contribution of each individual species. Recent studies often focus on inorganic arsenic as arsenite and arsenate, neglecting the organoarsenicals, i.e., methylarsine, dimethylarsine, and trimethylarsine or the corresponding oxidized forms methylarsonate, dimethylarsinate, and trimethylarsine oxide, although they were already first detected in PM in the mid-1970s. This work presents results from more than 300 daily PM10 and further size-resolved atmospheric PM samples in the size range from 15 nm to 10 μm collected in an urban environment in Austria during the course of a year. An ion-exchange-HPLC (with anion and cation exchange columns) and an ICPMS/MS system were used to study the seasonal variations of total arsenic and all species known to exist in PM. Inorganic arsenic was present in significant amounts in all samples with highest concentrations during winter, but also all organoarsenicals were detected throughout the year. We show that their contribution cannot be ignored, as particles smaller than <1 μm can contain up to 35% of the water+H2O2 extractable arsenic as methylated species, but only dimethylarsinate showed a clear seasonal trend throughout the year.
Zobrazit více v PubMed
Cullen W. R.Is Arsenic an Aphrodisiac?: the Sociochemistry of an Element; RSC Publ: Cambridge, 2008.
Jomova K.; Jenisova Z.; Feszterova M.; Baros S.; Liska J.; Hudecova D.; Rhodes C. J.; Valko M. Arsenic: toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. 10.1002/jat.1649. PubMed DOI
Duker A. A.; Carranza E. J. M.; Hale M. Arsenic geochemistry and health. Environ. Int. 2005, 31, 631–641. 10.1016/j.envint.2004.10.020. PubMed DOI
Nriagu J. O.; Pacyna J. M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. 10.1038/333134a0. PubMed DOI
Gonzalez-Castanedo Y.; Sanchez-Rodas D.; Sanchez de la Campa A.M.; Pandolfi M.; Alastuey A.; Cachorro V.E.; Querol X.; de la Rosa J.D. Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain). Chemosphere 2015, 119, 1296–1303. 10.1016/j.chemosphere.2014.09.093. PubMed DOI
Mandal B. Arsenic round the world: A review. Talanta 2002, 58, 201–235. 10.1016/S0039-9140(02)00268-0. PubMed DOI
Johnson D. L.; Braman R. S. Alkyl- and inorganic arsenic in air samples. Chemosphere 1975, 4, 333–338. 10.1016/0045-6535(75)90027-2. DOI
Mukai H.; Ambe Y. Determination of methylarsenic compounds in airborne particulate matter by gas chromatography with atomic absorption spectrometry. Anal. Chim. Acta 1987, 193, 219–229. 10.1016/S0003-2670(00)86153-X. DOI
Mukai H.; Ambe Y.; Muku T.; Takeshita K.; Fukuma T. Seasonal variation of methylarsenic compounds in airborne participate matter. Nature 1986, 324, 239–241. 10.1038/324239a0. DOI
Lewis A. S.; Reid K. R.; Pollock M. C.; Campleman S. L. Speciated arsenic in air: Measurement methodology and risk assessment considerations. J. Air Waste Manage. Assoc. 2012, 62, 2–17. 10.1080/10473289.2011.608620. PubMed DOI
Tziaras T.; Pergantis S. A.; Stephanou E. G. Investigating the Occurrence and Environmental Significance of Methylated Arsenic Species in Atmospheric Particles by Overcoming Analytical Method Limitations. Environ. Sci. Technol. 2015, 49, 11640–11648. 10.1021/acs.est.5b02328. PubMed DOI
Francesconi K. A.; Kuehnelt D. Determination of arsenic species: a critical review of methods and applications, 2000–2003. Analyst 2004, 129, 373–395. 10.1039/B401321M. PubMed DOI
Maher W.; Krikowa F.; Ellwood M.; Raber G.; Foster S. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. J. Anal. At. Spectrom. 2015, 30, 2129–2183. 10.1039/C5JA00155B. DOI
Farinha M. M.; Šlejkovec Z.; van Elteren J. T.; Wolterbeek H. T.; Freitas M. C. Arsenic Speciation in Lichens and in Coarse and Fine Airborne Particulate Matter by HPLC–UV–HG–AFS. J. Atmos. Chem. 2004, 49, 343–353. 10.1007/s10874-004-1248-1. DOI
Sánchez de la Campa A. M.; de La Rosa J. D.; Sánchez-Rodas D.; Oliveira V.; Alastuey A.; Querol X.; Gómez Ariza J. L. Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmos. Environ. 2008, 42, 6487–6495. 10.1016/j.atmosenv.2008.04.016. DOI
Sánchez-Rodas D.; Sánchez de la Campa A. M.; de la Rosa J. D.; Oliveira V.; Gómez-Ariza J. L.; Querol X.; Alastuey A. Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 2007, 66, 1485–1493. 10.1016/j.chemosphere.2006.08.043. PubMed DOI
Huang M.; Chen X.; Zhao Y.; Yu Chan C.; Wang W.; Wang X.; Wong M. H. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ. Pollut. 2014, 188, 37–44. 10.1016/j.envpol.2014.01.001. PubMed DOI
Jakob R.; Roth A.; Haas K.; Krupp E. M.; Raab A.; Smichowski P.; Gómez D.; Feldmann J. Atmospheric stability of arsines and the determination of their oxidative products in atmospheric aerosols (PM10): evidence of the widespread phenomena of biovolatilization of arsenic. J. Environ. Monit. 2010, 12, 409–416. 10.1039/B915867G. PubMed DOI
Merijanian A.; Zingaro R. A. Arsine Oxides. Inorg. Chem. 1966, 5, 187–191. 10.1021/ic50036a005. DOI
Scheer J.; Findenig S.; Goessler W.; Francesconi K. A.; Howard B.; Umans J. G.; Pollak J.; Tellez-Plaza M.; Silbergeld E. K.; Guallar E.; Navas-Acien A. Arsenic species and selected metals in human urine: validation of HPLC/ICPMS and ICPMS procedures for a long-term population-based epidemiological study. Anal. Methods 2012, 4, 406–413. 10.1039/c2ay05638k. PubMed DOI PMC
Tanda S.; Ličbinský R.; Hegrová J.; Goessler W. Impact of New Year’s Eve fireworks on the size resolved element distributions in airborne particles. Environ. Int. 2019, 128, 371–378. 10.1016/j.envint.2019.04.071. PubMed DOI
Tanda S.; Ličbinský R.; Hegrová J.; Faimon J.; Goessler W. Arsenic speciation in aerosols of a respiratory therapeutic cave: A first approach to study arsenicals in ultrafine particles. Sci. Total Environ. 2019, 651, 1839–1848. 10.1016/j.scitotenv.2018.10.102. PubMed DOI
Kovačevič M.; Goessler W. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium. Spectrochim. Acta, Part B 2005, 60, 1357–1362. 10.1016/j.sab.2005.08.003. DOI
Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polcyclic aromatic hydrocarbons in ambient air: Directive 2004/107/EC, 2004, 11, 523.
Zevenhoven R.; Mukherjee A. B.; Bhattacharya P.. Arsenic flows in the environment of the European Union: a synoptic review. Arsenic in Soil and Groundwater Environment—Biogeochemical Interactions, Health Effects and Remediation; Trace Metals and other Contaminants in the Environment; Elsevier, 2007; pp 527–547.
Amt der Steiermärkischen Landesregierung, Fachabteilung 17C - Technische Umweltkontrolle, Referat Luftgüteüberwachung . PM10 Datenanalyse: Grobschätzung des PM10-Anteils von Verkehrs- und Hausbrandemissionen an Grazer Luftgütemessstationen; Graz, 2007.
Mukai H.; Ambe Y. Detection of monomethylarsenic compounds originating from pesticide in airborne particulate matter sampled in an agricultural area in Japan. Atmos. Environ. 1987, 21, 185–189. 10.1016/0004-6981(87)90284-8. DOI
Faust J. A.; Junninen H.; Ehn M.; Chen X.; Ruusuvuori K.; Kieloaho A.-J.; Bäck J.; Ojala A.; Jokinen T.; Worsnop D. R.; Kulmala M.; Petäjä T. Real-Time Detection of Arsenic Cations from Ambient Air in Boreal Forest and Lake Environments. Environ. Sci. Technol. Lett. 2016, 3, 42–46. 10.1021/acs.estlett.5b00308. DOI
Lohila A.; Penttilä T.; Jortikka S.; Aalto T.; Anttila P.; Asmi E.; Aurela M.; Hatakka J.; Hellén H.; Henttonen H. Preface to the Special Issue on Integrated Research of Atmosphere, Ecosystems and Environment at Pallas. Boreal Environ. Res. 2015, 431–454.
Huang J.-H. Impact of Microorganisms on Arsenic Biogeochemistry: A Review. Water, Air, Soil Pollut. 2014, 225, 1120.10.1007/s11270-013-1848-y. DOI
Huang J.-H.; Hu K.-N.; Decker B. Organic Arsenic in the Soil Environment: Speciation, Occurrence, Transformation, and Adsorption Behavior. Water, Air, Soil Pollut. 2011, 219, 401–415. 10.1007/s11270-010-0716-2. DOI
Gorny J.; Billon G.; Lesven L.; Dumoulin D.; Madé B.; Noiriel C. Arsenic behavior in river sediments under redox gradient: a review. Sci. Total Environ. 2015, 505, 423–434. 10.1016/j.scitotenv.2014.10.011. PubMed DOI
Savage L.; Carey M.; Williams P. N.; Meharg A. A. Biovolatilization of Arsenic as Arsines from Seawater. Environ. Sci. Technol. 2018, 52, 3968–3974. 10.1021/acs.est.7b06456. PubMed DOI
Whitby K. T. The physical characteristics of sulfur aerosols. Atmos. Environ. 1978, 12, 135–159. 10.1016/0004-6981(78)90196-8. DOI
Parris G. E.; Brinckman F. E. Reactions which relate to environmental mobility of arsenic and antimony. Environ. Sci. Technol. 1976, 10, 1128–1134. 10.1021/es60122a010. PubMed DOI
Haas K.; Feldmann J. Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: a convenient method. Anal. Chem. 2000, 72, 4205–4211. 10.1021/ac000313c. PubMed DOI
Kapp R. W. Arsenic: Toxicology and Health Effects.. Encyclopedia of Food and Health; Elsevier 2016, 256–265. 10.1016/B978-0-12-384947-2.00043-X. DOI