MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32321832
PubMed Central
PMC7211965
DOI
10.1073/pnas.1919820117
PII: 1919820117
Knihovny.cz E-zdroje
- Klíčová slova
- microtubules, trafficking, vacuoles,
- MeSH
- alely MeSH
- Arabidopsis genetika metabolismus MeSH
- cytoplazmatické vezikuly genetika metabolismus MeSH
- endoplazmatické retikulum genetika metabolismus MeSH
- Golgiho aparát genetika metabolismus MeSH
- kineziny genetika metabolismus MeSH
- mikrotubuly genetika metabolismus MeSH
- multivezikulární tělíska genetika metabolismus MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- transport proteinů genetika MeSH
- vakuoly genetika metabolismus MeSH
- vezikulární transportní proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kineziny MeSH
- proteiny huseníčku MeSH
- vezikulární transportní proteiny MeSH
The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.
Central European Institute of Technology Mendel University in Brno CZ 61300 Brno Czech Republic
Department of Biosciences Durham University Durham DH1 3LE United Kingdom
Department of Plant Physiology University of Potsdam 14476 Potsdam Germany
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University Hangzhou 311300 China
Zobrazit více v PubMed
Löfke C., Dünser K., Scheuring D., Kleine-Vehn J., Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4, e05868 (2015). PubMed PMC
Brandizzi F., Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin. Cell Dev. Biol. 80, 94–105 (2018). PubMed PMC
Wolfenstetter S., Wirsching P., Dotzauer D., Schneider S., Sauer N., Routes to the tonoplast: The sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. Plant Cell 24, 215–232 (2012). PubMed PMC
Stierhof Y.-D., Viotti C., Scheuring D., Sturm S., Robinson D. G., Sorting nexins 1 and 2a locate mainly to the TGN. Protoplasma 250, 235–240 (2013). PubMed
Ebine K., et al. , Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr. Biol. 24, 1375–1382 (2014). PubMed
Feng Q.-N., Zhang Y., Li S., Tonoplast targeting of VHA-a3 relies on a Rab5-mediated but Rab7-independent vacuolar trafficking route. J. Integr. Plant Biol. 59, 230–233 (2017). PubMed
Matsuoka K., Bassham D. C., Raikhel N. V., Nakamura K., Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130, 1307–1318 (1995). PubMed PMC
Ahmed S. U., et al. , The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J. Cell Biol. 149, 1335–1344 (2000). PubMed PMC
Stigliano E., et al. , Two glycosylated vacuolar GFPs are new markers for ER-to-vacuole sorting. Plant Physiol. Biochem. 73, 337–343 (2013). PubMed
Bottanelli F., Foresti O., Hanton S., Denecke J., Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23, 3007–3025 (2011). PubMed PMC
Paris N., et al. , Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 115, 29–39 (1997). PubMed PMC
Sanderfoot A. A., et al. , A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. Proc. Natl. Acad. Sci. U.S.A. 95, 9920–9925 (1998). PubMed PMC
Shimada T., et al. , Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 100, 16095–16100 (2003). PubMed PMC
Lee Y., et al. , Functional identification of sorting receptors involved in trafficking of soluble lytic vacuolar proteins in vegetative cells of Arabidopsis. Plant Physiol. 161, 121–133 (2013). PubMed PMC
Kang H., Hwang I., Vacuolar sorting receptor-mediated trafficking of soluble vacuolar proteins in plant cells. Plants (Basel) 3, 392–408 (2014). PubMed PMC
Di Sansebastiano G. P., Barozzi F., Piro G., Denecke J., de Marcos Lousa C., Trafficking routes to the plant vacuole: Connecting alternative and classical pathways. J. Exp. Bot. 69, 79–90 (2017). PubMed
Seaman M. N. J., Retromer and the cation-independent mannose 6-phosphate receptor—time for a trial separation? Traffic 19, 150–152 (2018). PubMed PMC
Chen K. E., Healy M. D., Collins B. M., Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 20, 465–478 (2019). PubMed
Conibear E., Stevens T. H., Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol. Biol. Cell 11, 305–323 (2000). PubMed PMC
Pérez-Victoria F. J., Mardones G. A., Bonifacino J. S., Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol. Biol. Cell 19, 2350–2362 (2008). PubMed PMC
Pérez-Victoria F. J., et al. , Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex. Mol. Biol. Cell 21, 3386–3395 (2010). PubMed PMC
Wei J., et al. , The GARP complex is involved in intracellular cholesterol transport via targeting NPC2 to lysosomes. Cell Rep. 19, 2823–2835 (2017). PubMed
Wong M., Munro S., Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, 1256898 (2014). PubMed PMC
Cui Y., et al. , Retromer has a selective function in cargo sorting via endosome transport carriers. J. Cell Biol. 218, 615–631 (2019). PubMed PMC
Seaman M. N. J., The retromer complex—endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–4702 (2012). PubMed PMC
Wassmer T., et al. , The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev. Cell 17, 110–122 (2009). PubMed PMC
Oliviusson P., et al. , Plant retromer, localized to the prevacuolar compartment and microvesicles in Arabidopsis, may interact with vacuolar sorting receptors. Plant Cell 18, 1239–1252 (2006). PubMed PMC
Brandizzi F., Wasteneys G. O., Cytoskeleton-dependent endomembrane organization in plant cells: An emerging role for microtubules. Plant J. 75, 339–349 (2013). PubMed
Nebenführ A., Dixit R., Kinesins and myosins: Molecular motors that coordinate cellular functions in plants. Annu. Rev. Plant Biol. 69, 329–361 (2018). PubMed PMC
Rojo E., Sharma V. K., Kovaleva V., Raikhel N. V., Fletcher J. C., CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14, 969–977 (2002). PubMed PMC
Sanmartín M., et al. , Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 3645–3650 (2007). PubMed PMC
Sohn E. J., et al. , The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc. Natl. Acad. Sci. U.S.A. 104, 18801–18806 (2007). PubMed PMC
Zouhar J., Rojo E., Bassham D. C., AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. Plant Physiol. 149, 1668–1678 (2009). PubMed PMC
Zouhar J., Muñoz A., Rojo E., Functional specialization within the vacuolar sorting receptor family: VSR1, VSR3 and VSR4 sort vacuolar storage cargo in seeds and vegetative tissues. Plant J. 64, 577–588 (2010). PubMed
Sauer M., et al. , MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. Plant Cell 25, 2217–2235 (2013). PubMed PMC
Smith I. N., Briggs J. M., Structural mutation analysis of PTEN and its genotype-phenotype correlations in endometriosis and cancer. Proteins 84, 1625–1643 (2016). PubMed PMC
Ito E., et al. , Integration of two RAB5 groups during endosomal transport in plants. eLife 7, e34064 (2018). PubMed PMC
Xu N., et al. , Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol. Biol. 77, 251–260 (2011). PubMed PMC
Fuji K., et al. , Arabidopsis vacuolar sorting mutants (green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds. Plant Cell 19, 597–609 (2007). PubMed PMC
Tamura K., et al. , Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell 19, 320–332 (2007). PubMed PMC
Silady R. A., et al. , The GRV2/RME-8 protein of Arabidopsis functions in the late endocytic pathway and is required for vacuolar membrane flow. Plant J. 53, 29–41 (2008). PubMed
Pahari S., et al. , Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning. Development 141, 1894–1905 (2014). PubMed
Sakurai H. T., Inoue T., Nakano A., Ueda T., ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN, an interacting partner of RAB5 GTPases, regulates membrane trafficking to protein storage vacuoles in Arabidopsis. Plant Cell 28, 1490–1503 (2016). PubMed PMC
Takemoto K., et al. , Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, E2457–E2466 (2018). PubMed PMC
Otegui M. S., Herder R., Schulze J., Jung R., Staehelin L. A., The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18, 2567–2581 (2006). PubMed PMC
Shen J., et al. , An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells. Plant J. 75, 1003–1017 (2013). PubMed
Hunter P. R., Craddock C. P., Di Benedetto S., Roberts L. M., Frigerio L., Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 145, 1371–1382 (2007). PubMed PMC
Tse Y. C., et al. , Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16, 672–693 (2004). PubMed PMC
Grefen C., et al. , A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 64, 355–365 (2010). PubMed
Rosa-Ferreira C., Christis C., Torres I. L., Munro S., The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi. Biol. Open 4, 474–481 (2015). PubMed PMC
Murthy S. E., et al. , OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7, e41844 (2018). PubMed PMC
Yuan F., et al. , OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014). PubMed
Maity K., et al. , Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl. Acad. Sci. U.S.A. 116, 14309–14318 (2019). PubMed PMC
Zhang T., et al. , The mammalian protein (rbet1) homologous to yeast Bet1p is primarily associated with the pre-Golgi intermediate compartment and is involved in vesicular transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 139, 1157–1168 (1997). PubMed PMC
Malsam J., Söllner T. H., Organization of SNAREs within the Golgi stack. Cold Spring Harb. Perspect. Biol. 3, a005249 (2011). PubMed PMC
Uemura T., et al. , Systematic analysis of SNARE molecules in Arabidopsis: Dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004). PubMed
Wang L. C., et al. , Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. J. Exp. Bot. 62, 3609–3620 (2011). PubMed
Lobstein E., et al. , The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol. 135, 1480–1490 (2004). PubMed PMC
Guermonprez H., et al. , The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. J. Exp. Bot. 59, 3087–3098 (2008). PubMed
Hawkins T. J., Deeks M. J., Wang P., Hussey P. J., The evolution of the actin binding NET superfamily. Front Plant Sci 5, 254 (2014). PubMed PMC
Deeks M. J., et al. , A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 22, 1595–1600 (2012). PubMed
Wang P., et al. , The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24, 1397–1405 (2014). PubMed
Wang P., Hussey P. J., NETWORKED 3B: A novel protein in the actin cytoskeleton-endoplasmic reticulum interaction. J. Exp. Bot. 68, 1441–1450 (2017). PubMed PMC
Hamada T., et al. , RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. Plant Cell Physiol. 53, 699–708 (2012). PubMed
Kong Z., et al. , Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol. Plant 8, 1011–1023 (2015). PubMed
Plemel R. L., et al. , Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol. Biol. Cell 22, 1353–1363 (2011). PubMed PMC
Ohashi Y., Tremel S., Williams R. L., VPS34 complexes from a structural perspective. J. Lipid Res. 60, 229–241 (2019). PubMed PMC
Rostislavleva K., et al. , Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350, aac7365 (2015). PubMed PMC
Pérez-Victoria F. J., et al. , Structural basis for the wobbler mouse neurodegenerative disorder caused by mutation in the Vps54 subunit of the GARP complex. Proc. Natl. Acad. Sci. U.S.A. 107, 12860–12865 (2010). PubMed PMC
Cao X., Rogers S. W., Butler J., Beevers L., Rogers J. C., Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12, 493–506 (2000). PubMed PMC
Papa A., et al. , Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell 157, 595–610 (2014). PubMed PMC
Früholz S., et al. , Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nature Commun. 9, 643 (2018). PubMed PMC
Ambrose C., et al. , CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev. Cell 24, 649–659 (2013). PubMed
Renna L., et al. , TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat. Commun. 9, 5313 (2018). PubMed PMC
Onelli E., et al. , Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol. 8, 180078 (2018). PubMed PMC
Nakagawa T., et al. , Improved Gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007). PubMed
Geldner N., et al. , Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–178 (2009). PubMed PMC
Serra-Soriano M., Pallás V., Navarro J. A., A model for transport of a viral membrane protein through the early secretory pathway: Minimal sequence and endoplasmic reticulum lateral mobility requirements. Plant J. 77, 863–879 (2014). PubMed
Choi S. W., et al. , RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25, 1174–1187 (2013). PubMed PMC
Dettmer J., Hong-Hermesdorf A., Stierhof Y. D., Schumacher K., Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715–730 (2006). PubMed PMC
Marc J., et al. , A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10, 1927–1940 (1998). PubMed PMC
Deeks M. J., et al. , The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 123, 1209–1215 (2010). PubMed
Smertenko A. P., Deeks M. J., Hussey P. J., Strategies of actin reorganisation in plant cells. J. Cell Sci. 123, 3019–3028 (2010). PubMed
Boevink P., et al. , Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447 (1998). PubMed