Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35533279
PubMed Central
PMC9171914
DOI
10.1073/pnas.2200492119
Knihovny.cz E-zdroje
- Klíčová slova
- ESCRT machiner, endosomal recycling, multivesicular body/prevacuolar compartment (MVB/PVC), retromer complex, vacuolar trafficking,
- MeSH
- Arabidopsis * metabolismus MeSH
- endozomální třídící komplexy pro transport metabolismus MeSH
- endozomy metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- rostliny metabolismus MeSH
- transport proteinů fyziologie MeSH
- transportní proteiny metabolismus MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ALIX protein, Arabidopsis MeSH Prohlížeč
- endozomální třídící komplexy pro transport MeSH
- proteiny huseníčku * MeSH
- transportní proteiny MeSH
Vacuolar proteins play essential roles in plant physiology and development, but the factors and the machinery regulating their vesicle trafficking through the endomembrane compartments remain largely unknown. We and others have recently identified an evolutionarily conserved plant endosomal sorting complex required for transport (ESCRT)-associated protein apoptosis-linked gene-2 interacting protein X (ALIX), which plays canonical functions in the biogenesis of the multivesicular body/prevacuolar compartment (MVB/PVC) and in the sorting of ubiquitinated membrane proteins. In this study, we elucidate the roles and underlying mechanism of ALIX in regulating vacuolar transport of soluble proteins, beyond its conventional ESCRT function in eukaryotic cells. We show that ALIX colocalizes and physically interacts with the retromer core subunits Vps26 and Vps29 in planta. Moreover, double-mutant analysis reveals the genetic interaction of ALIX with Vps26 and Vps29 for regulating trafficking of soluble vacuolar proteins. Interestingly, depletion of ALIX perturbs membrane recruitment of Vps26 and Vps29 and alters the endosomal localization of vacuolar sorting receptors (VSRs). Taken together, ALIX functions as a unique retromer core subcomplex regulator by orchestrating receptor-mediated vacuolar sorting of soluble proteins.
Central European Institute of Technology Mendel University in Brno CZ 61300 Brno Czech Republic
Faculty of Science and Engineering Konan University Kobe 658 8501 Japan
Graduate School of Science Kyoto University Sakyo ku Kyoto 606 8502 Japan
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University 311300 Hangzhou China
The Chinese University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
Zobrazit více v PubMed
Jürgens G., Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol. 20, 481–504 (2004). PubMed
Wang X., et al. , The roles of endomembrane trafficking in plant abiotic stress responses. J. Integr. Plant Biol. 62, 55–69 (2020). PubMed
Frigerio L., Hinz G., Robinson D. G., Multiple vacuoles in plant cells: Rule or exception? Traffic 9, 1564–1570 (2008). PubMed
Shimada T., et al. , Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 100, 16095–16100 (2003). PubMed PMC
Fuji K., et al. , Arabidopsis vacuolar sorting mutants (green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds. Plant Cell 19, 597–609 (2007). PubMed PMC
Zouhar J., Muñoz A., Rojo E., Functional specialization within the vacuolar sorting receptor family: VSR1, VSR3 and VSR4 sort vacuolar storage cargo in seeds and vegetative tissues. Plant J. 64, 577–588 (2010). PubMed
Zhu D., Zhang M., Gao C., Shen J., Protein trafficking in plant cells: Tools and markers. Sci. China Life Sci. 63, 343–363 (2020). PubMed
Shen J., et al. , An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells. Plant J. 75, 1003–1017 (2013). PubMed
Watanabe E., Shimada T., Kuroyanagi M., Nishimura M., Hara-Nishimura I., Calcium-mediated association of a putative vacuolar sorting receptor PV72 with a propeptide of 2S albumin. J. Biol. Chem. 277, 8708–8715 (2002). PubMed
Di Sansebastiano G. P., Barozzi F., Piro G., Denecke J., de Marcos Lousa C., Trafficking routes to the plant vacuole: Connecting alternative and classical pathways. J. Exp. Bot. 69, 79–90 (2017). PubMed
Robinson D. G., Retromer and VSR recycling: A red herring? Plant Physiol. 176, 483–484 (2018). PubMed PMC
MacGurn J. A., Hsu P. C., Emr S. D., Ubiquitin and membrane protein turnover: From cradle to grave. Annu. Rev. Biochem. 81, 231–259 (2012). PubMed
Richardson L. G., et al. , Protein-protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. Front Plant Sci 2, 20 (2011). PubMed PMC
Winter V., Hauser M.-T., Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci. 11, 115–123 (2006). PubMed PMC
Reyes F. C., et al. , A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development. J. Biol. Chem. 289, 4980–4988 (2014). PubMed PMC
Liu C., et al. , A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. New Phytol. 231, 193–209 (2021). PubMed
Gao C., et al. , A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr. Biol. 24, 2556–2563 (2014). PubMed
Kolb C., et al. , FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiol. 167, 1361–1373 (2015). PubMed PMC
Zhao Q., et al. , RST1 is a FREE1 suppressor that negatively regulates vacuolar trafficking in Arabidopsis. Plant Cell 31, 2152–2168 (2019). PubMed PMC
Shen J., et al. , A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat. Commun. 9, 3784 (2018). PubMed PMC
Kalinowska K., et al. , Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc. Natl. Acad. Sci. U.S.A. 112, E5543–E5551 (2015). PubMed PMC
Cardona-López X., et al. , ESCRT-III-Associated Protein ALIX mediates high-affinity phosphate transporter trafficking to maintain phosphate homeostasis in Arabidopsis. Plant Cell 27, 2560–2581 (2015). PubMed PMC
Shen J., et al. , AtBRO1 functions in ESCRT-I complex to regulate multivesicular body protein sorting. Mol. Plant 9, 760–763 (2016). PubMed
García-León M., et al. , Arabidopsis ALIX regulates stomatal aperture and turnover of abscisic acid receptors. Plant Cell 31, 2411–2429 (2019). PubMed PMC
Hunter P. R., Craddock C. P., Di Benedetto S., Roberts L. M., Frigerio L., Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 145, 1371–1382 (2007). PubMed PMC
Rojo E., Sharma V. K., Kovaleva V., Raikhel N. V., Fletcher J. C., CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14, 969–977 (2002). PubMed PMC
Sanmartín M., et al. , Divergent functions of VTI12 and VTI11 in trafficking to storage and lytic vacuoles in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 3645–3650 (2007). PubMed PMC
Delgadillo M. O., et al. , MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway. Proc. Natl. Acad. Sci. U.S.A. 117, 9884–9895 (2020). PubMed PMC
Jaillais Y., et al. , The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130, 1057–1070 (2007). PubMed
Jaillais Y., Fobis-Loisy I., Miège C., Rollin C., Gaude T., AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443, 106–109 (2006). PubMed
Heucken N., Ivanov R., The retromer, sorting nexins and the plant endomembrane protein trafficking. J. Cell Sci. 131, jcs203695 (2018). PubMed
Robinson D. G., Neuhaus J. M., Receptor-mediated sorting of soluble vacuolar proteins: Myths, facts, and a new model. J. Exp. Bot. 67, 4435–4449 (2016). PubMed
Jha S. G., et al. , Vacuolar Protein Sorting 26C encodes an evolutionarily conserved large retromer subunit in eukaryotes that is important for root hair growth in Arabidopsis thaliana. Plant J. 94, 595–611 (2018). PubMed
Wang J., Cai Y., Miao Y., Lam S. K., Jiang L., Wortmannin induces homotypic fusion of plant prevacuolar compartments. J. Exp. Bot. 60, 3075–3083 (2009). PubMed PMC
Zelazny E., et al. , Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. J. Biol. Chem. 288, 8815–8825 (2013). PubMed PMC
Shimada T., et al. , AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant Cell Physiol. 47, 1187–1194 (2006). PubMed
Humair D., Hernández Felipe D., Neuhaus J. M., Paris N., Demonstration in yeast of the function of BP-80, a putative plant vacuolar sorting receptor. Plant Cell 13, 781–792 (2001). PubMed PMC
Kang H., et al. , Trafficking of vacuolar proteins: The crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. Plant Cell 24, 5058–5073 (2012). PubMed PMC
Hu S., Li Y., Shen J., A diverse membrane interaction network for plant multivesicular bodies: Roles in proteins vacuolar delivery and unconventional secretion. Front Plant Sci 11, 425 (2020). PubMed PMC
Wang H., et al. , Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J. 61, 826–838 (2010). PubMed
Tamura K., et al. , Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 35, 545–555 (2003). PubMed
Gao C., et al. , Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation. Proc. Natl. Acad. Sci. U.S.A. 112, 1886–1891 (2015). PubMed PMC
Isono E., et al. , The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22, 1826–1837 (2010). PubMed PMC
Metcalf D., Isaacs A. M., The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. Biochem. Soc. Trans. 38, 1469–1473 (2010). PubMed
Urwin H., et al. ; FReJA Consortium, Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum. Mol. Genet. 19, 2228–2238 (2010). PubMed PMC
Pryor P. R., Luzio J. P., Delivery of endocytosed membrane proteins to the lysosome. Biochim. Biophys. Acta 1793, 615–624 (2009). PubMed
Cui Y., Zhao Q., Hu S., Jiang L., Vacuole biogenesis in plants: How many vacuoles, how many models? Trends Plant Sci. 25, 538–548 (2020). PubMed
Cui Y., et al. , A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat. Plants 5, 95–105 (2019). PubMed
Seaman M. N., Marcusson E. G., Cereghino J. L., Emr S. D., Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997). PubMed PMC
Wang H., Zhuang X. H., Hillmer S., Robinson D. G., Jiang L. W., Vacuolar sorting receptor (VSR) proteins reach the plasma membrane in germinating pollen tubes. Mol. Plant 4, 845–853 (2011). PubMed
Wang J., Tse Y. C., Hinz G., Robinson D. G., Jiang L., Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. J. Exp. Bot. 63, 1367–1380 (2012). PubMed PMC
Reguera M., et al. , pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell 27, 1200–1217 (2015). PubMed PMC
daSilva L. L. P., et al. , Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17, 132–148 (2005). PubMed PMC
Yamazaki M., et al. , Arabidopsis VPS35, a retromer component, is required for vacuolar protein sorting and involved in plant growth and leaf senescence. Plant Cell Physiol. 49, 142–156 (2008). PubMed
Niemes S., et al. , Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J. 61, 107–121 (2010). PubMed
Scheuring D., et al. , Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23, 3463–3481 (2011). PubMed PMC
Früholz S., Fäßler F., Kolukisaoglu Ü., Pimpl P., Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nat. Commun. 9, 643 (2018). PubMed PMC
Martinière A., et al. , In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25, 4028–4043 (2013). PubMed PMC
Shen J., et al. , Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 6, 1419–1437 (2013). PubMed
Pires R., et al. , A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009). PubMed PMC