Epigenetic Research in Stem Cell Bioengineering-Anti-Cancer Therapy, Regenerative and Reconstructive Medicine in Human Clinical Trials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32326172
PubMed Central
PMC7226111
DOI
10.3390/cancers12041016
PII: cancers12041016
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, epigenetics, reconstructive medicine, regenerative medicine, stem cells,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.
Department of Anatomy Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences 60 781 Poznan Poland
Department of Toxicology Poznan University of Medical Sciences 61 631 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
The School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen AB25 2ZD UK
Zobrazit více v PubMed
Crick F. Central dogma of molecular biology. Nature. 1970;227:561–563. doi: 10.1038/227561a0. PubMed DOI
Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–170. doi: 10.1126/science.3310230. PubMed DOI
Egger G., Liang G., Aparicio A., Jones P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–463. doi: 10.1038/nature02625. PubMed DOI
Lopomo A., Burgio E., Migliore L. Epigenetics of Obesity. Prog. Mol. Biol. Transl. Sci. 2016;140:151–184. doi: 10.1016/bs.pmbts.2016.02.002. PubMed DOI
Muka T., Koromani F., Portilla E., O’Connor A., Bramer W.M., Troup J., Chowdhury R., Dehghan A., Franco O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016;212:174–183. doi: 10.1016/j.ijcard.2016.03.062. PubMed DOI
Lovrei L., Maver A., Zadel M., Peterli B. The Role of Epigenetics in Neurodegenerative Diseases. Neurodegener. Dis. 2013;345:345. doi: 10.5772/54744. DOI
Carson C., Lawson H.A. Epigenetics of metabolic syndrome. Physiol. Genom. 2018;50:947–955. doi: 10.1152/physiolgenomics.00072.2018. PubMed DOI PMC
Huang T., Peng X., Li Z., Zhou Q., Huang S., Wang Y., Li J., Song Y. Epigenetics and bone diseases. Genet. Res. (Camb.) 2018;100:e6. doi: 10.1017/S0016672318000034. PubMed DOI PMC
Del Real A., Riancho-Zarrabeitia L., López-Delgado L., Riancho J.A. Epigenetics of Skeletal Diseases. Curr. Osteoporos. Rep. 2018;16:246–255. doi: 10.1007/s11914-018-0435-y. PubMed DOI
Okano M., Bell D.W., Haber D.A., Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–257. doi: 10.1016/S0092-8674(00)81656-6. PubMed DOI
Tabolacci E., Pietrobono R., Moscato U., Oostra B.A., Chiurazzi P., Neri G. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur. J. Hum. Genet. 2005;13:641–648. doi: 10.1038/sj.ejhg.5201393. PubMed DOI
Feinberg A.P., Tycko B. The history of cancer epigenetics. Nat. Rev. Cancer. 2004;4:143–153. doi: 10.1038/nrc1279. PubMed DOI
Adenocarcinoma D., Sato N., Maitra A., Fukushima N., Heek N.T., Van Matsubayashi H., Iacobuzio-Donahue C.A., Rosty C., Goggins M., van Heek N.T. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003;63:4158–4166. PubMed
Cichowski K., Shih T.S., Schmitt E., Santiago S., Reilly K., McLaughlin M.E., Bronson R.T., Jacks T. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286:2172–2176. doi: 10.1126/science.286.5447.2172. PubMed DOI
Sakai T., Toguchida J., Ohtani N., Yandell D.W., Rapaport J.M., Dryja T.P. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet. 1991;48:880–888. PubMed PMC
Schneider E., Pliushch G., Hajj N., El Galetzka D., Puhl A., Schorsch M., Frauenknecht K., Riepert T., Tresch A., Müller A.M., et al. Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res. 2010;38:3880–3890. doi: 10.1093/nar/gkq126. PubMed DOI PMC
Holliday R., Pugh J.E. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–232. doi: 10.1126/science.1111098. PubMed DOI
Chen C., Yang M.C.K., Yang T.P. Evidence that silencing of the HPRT promoter by DNA methylation is mediated by critical CpG sites. J. Biol. Chem. 2001;276:320–328. doi: 10.1074/jbc.M007096200. PubMed DOI
Fatemi M., Hermann A., Gowher H., Jeltsch A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur. J. Biochem. 2002;269:4981–4984. doi: 10.1046/j.1432-1033.2002.03198.x. PubMed DOI
Siegfried Z., Eden S., Mendelsohn M., Feng X., Tsuberi B.Z., Cedar H. DNA methylation represses transcription in vivo. Nat. Genet. 1999;22:203–206. doi: 10.1038/9727. PubMed DOI
Wolf S.F., Jolly D.J., Lunnen K.D., Friedmann T., Migeon B.R. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: Implications for X chromosome inactivation. Proc. Natl. Acad. Sci. USA. 1984;81:2806–2810. doi: 10.1073/pnas.81.9.2806. PubMed DOI PMC
Yang A.S., Estécio M.R.H., Doshi K., Kondo Y., Tajara E.H., Issa J.-P.J. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38. doi: 10.1093/nar/gnh032. PubMed DOI PMC
Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L., Schübeler D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 2005;37:853–862. doi: 10.1038/ng1598. PubMed DOI
Herman J.G., Graff J.R., Myöhänen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA. 1996;93:9821–9826. doi: 10.1073/pnas.93.18.9821. PubMed DOI PMC
Lennartsson A., Ekwall K. Histone modification patterns and epigenetic codes. Biochim. Biophys. Acta Gen. Subj. 2009;1790:863–868. doi: 10.1016/j.bbagen.2008.12.006. PubMed DOI
Zhao J. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci. 2007;64:3017–3033. doi: 10.1007/s00018-007-7137-4. PubMed DOI PMC
Cedar H., Bergman Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet. 2009;10:295–304. doi: 10.1038/nrg2540. PubMed DOI
Turner B.M. Defining an epigenetic code. Nat. Cell Biol. 2007;9:2–6. doi: 10.1038/ncb0107-2. PubMed DOI
Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature. 2000;403:41–45. doi: 10.1038/47412. PubMed DOI
Li F., Huarte M., Zaratiegui M., Vaughn M.W., Shi Y., Martienssen R., Cande W.Z. Lid2 Is Required for Coordinating H3K4 and H3K9 Methylation of Heterochromatin and Euchromatin. Cell. 2008;135:272–283. doi: 10.1016/j.cell.2008.08.036. PubMed DOI PMC
Lee J.S., Shukla A., Schneider J., Swanson S.K., Washburn M.P., Florens L., Bhaumik S.R., Shilatifard A. Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated by COMPASS. Cell. 2007;131:1084–1096. doi: 10.1016/j.cell.2007.09.046. PubMed DOI
Duncan E.M., Muratore-Schroeder T.L., Cook R.G., Garcia B.A., Shabanowitz J., Hunt D.F., Allis C.D. Cathepsin L Proteolytically Processes Histone H3 During Mouse Embryonic Stem Cell Differentiation. Cell. 2008;135:284–294. doi: 10.1016/j.cell.2008.09.055. PubMed DOI PMC
Workman J.L., Kingston R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 1998;67:545–579. doi: 10.1146/annurev.biochem.67.1.545. PubMed DOI
Pasini D., Hansen K.H., Christensen J., Agger K., Cloos P.A.C., Helin K. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 2008;22:1345–1355. doi: 10.1101/gad.470008. PubMed DOI PMC
Luger K., Dechassa M.L., Tremethick D.J. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 2012;13:436–447. doi: 10.1038/nrm3382. PubMed DOI PMC
Marmorstein R., Zhou M.M. Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014;6:a018762. doi: 10.1101/cshperspect.a018762. PubMed DOI PMC
Feingold E.A., Good P.J., Guyer M.S., Kamholz S., Liefer L., Wetterstrand K., Collins F.S., Gingeras T.R., Kampa D., Sekinger E.A., et al. The ENCODE (ENCyclopedia of DNA Elements) Project. Science. 2004;306:636–640. doi: 10.1126/science.1105136. PubMed DOI
Mattick J.S., Makunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006;15 doi: 10.1093/hmg/ddl046. PubMed DOI
Choudhuri S. Small noncoding RNAs: Biogenesis, function, and emerging significance in toxicology. J. Biochem. Mol. Toxicol. 2010;24:195–216. doi: 10.1002/jbt.20325. PubMed DOI
Uchida S., Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ. Res. 2015;116:737–750. doi: 10.1161/CIRCRESAHA.116.302521. PubMed DOI
Wang K.C., Chang H.Y. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell. 2011;43:904–914. doi: 10.1016/j.molcel.2011.08.018. PubMed DOI PMC
Kim T.K., Hemberg M., Gray J.M., Costa A.M., Bear D.M., Wu J., Harmin D.A., Laptewicz M., Barbara-Haley K., Kuersten S., et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–187. doi: 10.1038/nature09033. PubMed DOI PMC
Ferguson-Smith A.C., Sasaki H., Cattanach B.M., Surani M.A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993;362:751–755. doi: 10.1038/362751a0. PubMed DOI
Herzing L.B.K., Romer J.T., Horn J.M., Ashworth A. Xist has properties of the X-chromosome inactivation centre. Nature. 1997;386:272–275. doi: 10.1038/386272a0. PubMed DOI
Yap K.L., Li S., Muñoz-Cabello A.M., Raguz S., Zeng L., Mujtaba S., Gil J., Walsh M.J., Zhou M.M. Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a. Mol. Cell. 2010;38:662–674. doi: 10.1016/j.molcel.2010.03.021. PubMed DOI PMC
Astori G., Vignati F., Bardelli S., Tubio M., Gola M., Albertini V., Bambi F., Scali G., Castelli D., Rasini V., et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J. Transl. Med. 2007;5 doi: 10.1186/1479-5876-5-55. PubMed DOI PMC
Boyer L.A., Tong I.L., Cole M.F., Johnstone S.E., Levine S.S., Zucker J.P., Guenther M.G., Kumar R.M., Murray H.L., Jenner R.G., et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–956. doi: 10.1016/j.cell.2005.08.020. PubMed DOI PMC
Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–317. doi: 10.1038/nature05934. PubMed DOI
Rumman M., Dhawan J., Kassem M. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration. Stem Cells. 2015;33:2903–2912. doi: 10.1002/stem.2056. PubMed DOI
Saldaña L., Bensiamar F., Vallés G., Mancebo F.J., García-Rey E., Vilaboa N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res. Ther. 2019;10:1–15. doi: 10.1186/s13287-019-1156-6. PubMed DOI PMC
Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., van Wijnen A.J., Cool S.M. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl. Med. 2017;6:2173–2785. doi: 10.1002/sctm.17-0129. PubMed DOI PMC
Vincent A., Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009;78:99–107. doi: 10.1016/j.diff.2009.07.002. PubMed DOI
Piekarz R.L., Bates S.E. Epigenetic Modifiers: Basic Understanding and Clinical Development. Clin. Cancer Res. 2009 doi: 10.1158/1078-0432.CCR-08-2788. PubMed DOI PMC
Bibikova M., Chudin E., Wu B., Zhou L., Garcia E.W., Liu Y., Shin S., Plaia T.W., Auerbach J.M., Arking D.E., et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res. 2006;16:1075–1083. doi: 10.1101/gr.5319906. PubMed DOI PMC
Atlasi Y., Stunnenberg H.G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 2017;18:643–658. doi: 10.1038/nrg.2017.57. PubMed DOI
Mottamal M., Zheng S., Huang T.L., Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–3941. doi: 10.3390/molecules20033898. PubMed DOI PMC
Buzanska L. Human Neural Stem Cells: From Generation to Differentiation and Application. Springer Publishing; New York, NY, USA: 2018.
Aguilar-Gallardo C., Simón C. Cells, stem cells, and cancer stem cells. Semin. Reprod. Med. 2013;31:5–13. doi: 10.1055/s-0032-1331792. PubMed DOI
Alexanian A.R. Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J. Cell. Biochem. 2007;100:362–371. doi: 10.1002/jcb.21029. PubMed DOI
Chen Q., Shou P., Zheng C., Jiang M., Cao G., Yang Q., Cao J., Xie N., Velletri T., Zhang X., et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016;23:1128–1139. doi: 10.1038/cdd.2015.168. PubMed DOI PMC
Hemming S., Cakouros D., Isenmann S., Cooper L., Menicanin D., Zannettino A., Gronthos S. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 2014;32:802–815. doi: 10.1002/stem.1573. PubMed DOI
Ye L., Fan Z., Yu B., Chang J., Al Hezaimi K., Zhou X., Park N.H., Wang C.Y. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 2012;11:50–61. doi: 10.1016/j.stem.2012.04.009. PubMed DOI PMC
Xu J., Yu B., Hong C., Wang C.Y. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int. J. Oral Sci. 2013;5:200–205. doi: 10.1038/ijos.2013.77. PubMed DOI PMC
De Haan G., Gerrits A. Epigenetic control of hematopoietic stem cell aging: The case of Ezh2. Ann. N. Y. Acad. Sci. 2007;1106:233–239. doi: 10.1196/annals.1392.008. PubMed DOI
Chou R.H., Yu Y.L., Hung M.C. The roles of EZH2 in cell lineage commitment. Am. J. Transl. Res. 2011;3:243–250. PubMed PMC
Caretti G., Di Padova M., Micales B., Lyons G.E., Sartorelli V. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 2004;18:2627–2638. doi: 10.1101/gad.1241904. PubMed DOI PMC
Sher F., Rößler R., Brouwer N., Balasubramaniyan V., Boddeke E., Copray S. Differentiation of Neural Stem Cells into Oligodendrocytes: Involvement of the Polycomb Group Protein Ezh2. Stem Cells. 2008;26:2875–2883. doi: 10.1634/stemcells.2008-0121. PubMed DOI
Rosa A., Brivanlou A.H. A regulatory circuitry comprised of miR-302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. EMBO J. 2011;30:237–248. doi: 10.1038/emboj.2010.319. PubMed DOI PMC
Pursani V., Pethe P., Bashir M., Sampath P., Tanavde V., Bhartiya D. Genetic and Epigenetic Profiling Reveals EZH2-mediated Down Regulation of OCT-4 Involves NR2F2 during Cardiac Differentiation of Human Embryonic Stem Cells. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-13442-9. PubMed DOI PMC
Villasante A., Piazzolla D., Li H., Gomez-Lopez G., Djabali M., Serrano M. Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. Cell Cycle. 2011;10:1488–1498. doi: 10.4161/cc.10.9.15658. PubMed DOI PMC
Kashyap V., Rezende N.C., Scotland K.B., Shaffer S.M., Persson J.L., Gudas L.J., Mongan N.P. Regulation of Stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb Repressive Complexes and Stem Cell microRNAs. Stem Cells Dev. 2009;18:1093–1108. doi: 10.1089/scd.2009.0113. PubMed DOI PMC
Pan G., Li J., Zhou Y., Zheng H., Pei D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J. 2006;20:1730–1732. doi: 10.1096/fj.05-5543fje. PubMed DOI
Chew J., Tam W., Yeap L., Li P., Ang Y., Lim B., Robson P., Ng H. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol. 2005;25:6031–6046. doi: 10.1128/MCB.25.14.6031-6046.2005. PubMed DOI PMC
Bernstein B.E., Mikkelsen T.S., Xie X., Kamal M., Huebert D.J., Cuff J., Fry B., Meissner A., Wernig M., Plath K., et al. A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell. 2006;125:315–326. doi: 10.1016/j.cell.2006.02.041. PubMed DOI
Grandy R.A., Whitfield T.W., Wu H., Fitzgerald M.P., VanOudenhove J.J., Zaidi S.K., Montecino M.A., Lian J.B., van Wijnen A.J., Stein J.L., et al. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation. Mol. Cell. Biol. 2016;36:615–627. doi: 10.1128/MCB.00877-15. PubMed DOI PMC
Challen G.A., Sun D., Jeong M., Luo M., Jelinek J., Berg J.S., Bock C., Vasanthakumar A., Gu H., Xi Y., et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 2012;44:23–31. doi: 10.1038/ng.1009. PubMed DOI PMC
Huang C., Xu M., Zhu B. Epigenetic inheritance mediated by histone lysine methylation: Maintaining transcriptional states without the precise restoration of marks? Philos. Trans. R. Soc. B Biol. Sci. 2013;368 doi: 10.1098/rstb.2011.0332. PubMed DOI PMC
Reverón-Gómez N., González-Aguilera C., Stewart-Morgan K.R., Petryk N., Flury V., Graziano S., Johansen J.V., Jakobsen J.S., Alabert C., Groth A. Accurate Recycling of Parental Histones Reproduces the Histone Modification Landscape during DNA Replication. Mol. Cell. 2018;72:239–249.e5. doi: 10.1016/j.molcel.2018.08.010. PubMed DOI PMC
O’Kane C.J., Hyland E.M. Yeast epigenetics: The inheritance of histone modification states. Biosci. Rep. 2019;39 doi: 10.1042/BSR20182006. PubMed DOI PMC
Poole R.M. Belinostat: First global approval. Drugs. 2014;74:1543–1554. doi: 10.1007/s40265-014-0275-8. PubMed DOI
Whittaker S.J., Demierre M.F., Kim E.J., Rook A.H., Lerner A., Duvic M., Scarisbrick J., Reddy S., Robak T., Becker J.C., et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 2010;28:4485–4491. doi: 10.1200/JCO.2010.28.9066. PubMed DOI
Park J.W., Han J.W. Targeting epigenetics for cancer therapy. Arch. Pharm. Res. 2019;42:159–170. doi: 10.1007/s12272-019-01126-z. PubMed DOI PMC
Cavalli G., Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–499. doi: 10.1038/s41586-019-1411-0. PubMed DOI
Yoshioka K.I., Matsuno Y., Hyodo M., Fujimori H. Genomic-destabilization-associated mutagenesis and clonal evolution of cells with mutations in tumor-suppressor genes. Cancers (Basel) 2019;11:1643. doi: 10.3390/cancers11111643. PubMed DOI PMC
Valkenburg K.C., De Groot A.E., Pienta K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018;15:366–381. doi: 10.1038/s41571-018-0007-1. PubMed DOI PMC
Kelly T.K., De Carvalho D.D., Jones P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 2010;28:1069–1078. doi: 10.1038/nbt.1678. PubMed DOI PMC
Constâncio V., Nunes S.P., Moreira-Barbosa C., Freitas R., Oliveira J., Pousa I., Oliveira J., Soares M., Dias C.G., Dias T., et al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenet. 2019;11:175. doi: 10.1186/s13148-019-0779-x. PubMed DOI PMC
Nunes S.P., Moreira-Barbosa C., Salta S., de Sousa S.P., Pousa I., Oliveira J., Soares M., Rego L., Dias T., Rodrigues J., et al. Cell-free DNA methylation of selected genes allows for early detection of the major cancers in women. Cancers (Basel) 2018;10:357. doi: 10.3390/cancers10100357. PubMed DOI PMC
Shi Y.X., Sheng D.Q., Cheng L., Song X.Y. Current Landscape of Epigenetics in Lung Cancer: Focus on the Mechanism and Application. J. Oncol. 2019;2019 doi: 10.1155/2019/8107318. PubMed DOI PMC
Yao J., Chen J., Li L.-Y., Wu M. Epigenetic plasticity of enhancers in cancer. Transcription. 2020:1–11. doi: 10.1080/21541264.2020.1713682. PubMed DOI PMC
Sanaei M., Kavoosi F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv. Biomed. Res. 2019;8:63. doi: 10.4103/abr.abr_142_19. PubMed DOI PMC
Tortorella S.M., Hung A., Karagiannis T.C. The Implication of Cancer Progenitor Cells and the Role of Epigenetics in the Development of Novel Therapeutic Strategies for Chronic Myeloid Leukemia. Antioxid. Redox Signal. 2015;22:1425–1462. doi: 10.1089/ars.2014.6096. PubMed DOI
Becker M.S., Schmezer P., Breuer R., Haas S.F., Essers M.A., Krammer P.H., Li-Weber M. The traditional Chinese medical compound Rocaglamide protects nonmalignant primary cells from DNA damage-induced toxicity by inhibition of p53 expression. Cell Death Dis. 2014;5 doi: 10.1038/cddis.2013.528. PubMed DOI PMC
Das D., Ghosh S., Maitra A., Biswas N.K., Panda C.K., Roy B., Sarin R., Majumder P.P. Epigenomic dysregulation-mediated alterations of key biological pathways and tumor immune evasion are hallmarks of gingivo-buccal oral cancer. Clin. Epigenet. 2019;11 doi: 10.1186/s13148-019-0782-2. PubMed DOI PMC
Yu J., Zayas J., Qin B., Wang L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics. 2019;20:1151–1157. doi: 10.2217/pgs-2019-0078. PubMed DOI PMC
Xu S., Liu H., Wan L., Zhang W., Wang Q., Zhang S., Shang S., Zhang Y., Pang D. The MS-lincRNA landscape reveals a novel lincRNA BCLIN25 that contributes to tumorigenesis by upregulating ERBB2 expression via epigenetic modification and RNA–RNA interactions in breast cancer. Cell Death Dis. 2019;10 doi: 10.1038/s41419-019-2137-5. PubMed DOI PMC
Nunes S.P., Diniz F., Moreira-Barbosa C., Constâncio V., Silva A.V., Oliveira J., Soares M., Paulino S., Cunha A.L., Rodrigues J., et al. Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies. J. Clin. Med. 2019;8:1500. doi: 10.3390/jcm8091500. PubMed DOI PMC
Moreira-Barbosa C., Barros-Silva D., Costa-Pinheiro P., Torres-Ferreira J., Constâncio V., Freitas R., Oliveira J., Antunes L., Henrique R., Jerónimo C. Comparing diagnostic and prognostic performance of two-gene promoter methylation panels in tissue biopsies and urines of prostate cancer patients. Clin. Epigenet. 2018;10 doi: 10.1186/s13148-018-0564-2. PubMed DOI PMC
Hu B.B., Wang X.Y., Gu X.Y., Zou C., Gao Z.J., Zhang H., Fan Y. N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers: Roles, mechanisms, and applications. Mol. Cancer. 2019;18 doi: 10.1186/s12943-019-1099-7. PubMed DOI PMC
Chen Y., Zhou C., Sun Y., He X., Xue D. m 6 A RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma. Epigenomics. 2019;12:87–99. doi: 10.2217/epi-2019-0182. PubMed DOI
Orouji E., Peitsch W.K., Orouji A., Houben R., Utikal J. Oncogenic Role of an Epigenetic Reader of m6A RNA Modification: YTHDF1 in Merkel Cell Carcinoma. Cancers (Basel) 2020;12:202. doi: 10.3390/cancers12010202. PubMed DOI PMC
Lin Y., Chen Z., Zheng Y., Liu Y., Gao J., Lin S., Chen S. MiR-506 Targets UHRF1 to Inhibit Colorectal Cancer Proliferation and Invasion via the KISS1/PI3K/NF-κB Signaling Axis. Front. Cell Dev. Biol. 2019;7 doi: 10.3389/fcell.2019.00266. PubMed DOI PMC
Shi Y., Wei J., Chen Z., Yuan Y., Li X., Zhang Y., Meng Y., Hu Y., Du H. Integrative Analysis Reveals Comprehensive Altered Metabolic Genes Linking with Tumor Epigenetics Modification in Pan-Cancer. Biomed. Res. Int. 2019;2019 doi: 10.1155/2019/6706354. PubMed DOI PMC
Dong Z., Pu L., Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front. Cell Dev. Biol. 2020;8:4. doi: 10.3389/fcell.2020.00004. PubMed DOI PMC
Martín B., Pappa S., Díez-Villanueva A., Mallona I., Custodio J., Barrero M.J., Peinado M.A., Jordà M. Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics. 2020;1–15 doi: 10.1080/15592294.2020.1722398. PubMed DOI PMC
Yang L., Lei Q., Li L., Yang J., Dong Z., Cui H. Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer. Clin. Epigenet. 2019;11:199. doi: 10.1186/s13148-019-0778-y. PubMed DOI PMC
Li S., Chen K., Zhang Y., Barnes S.D., Jaichander P., Zheng Y., Hassan M., Malladi V.S., Skapek S.X., Xu L., et al. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev. 2019;33:626–640. doi: 10.1101/gad.324467.119. PubMed DOI PMC
Fachal L., Aschard H., Beesley J., Barnes D.R., Allen J., Kar S., Pooley K.A., Dennis J., Michailidou K., Turman C., et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet. 2020;52:56–73. doi: 10.1038/s41588-019-0537-1. PubMed DOI PMC
Aloia L., McKie M.A., Vernaz G., Cordero-Espinoza L., Aleksieva N., van den Ameele J., Antonica F., Font-Cunill B., Raven A., Aiese Cigliano R., et al. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat. Cell Biol. 2019;21:1321–1333. doi: 10.1038/s41556-019-0402-6. PubMed DOI PMC
Robertson F.L., Marqués-Torrejón M.A., Morrison G.M., Pollard S.M. Experimental models and tools to tackle glioblastoma. DMM Dis. Model. Mech. 2019;12 doi: 10.1242/dmm.040386. PubMed DOI PMC
Abbas M.N., Kausar S., Cui H. Therapeutic potential of natural products in glioblastoma treatment: Targeting key glioblastoma signaling pathways and epigenetic alterations. Clin. Transl. Oncol. 2019 doi: 10.1007/s12094-019-02227-3. PubMed DOI
Schötterl S., Hübner M., Armento A., Veninga V., Wirsik N.M., Bernatz S., Lentzen H., Mittelbronn M., Naumann U. Viscumins functionally modulate cell motility-associated gene expression. Int. J. Oncol. 2017;50:684–696. doi: 10.3892/ijo.2017.3838. PubMed DOI
Zhou L., Quan Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol. 2015;25:82–91. doi: 10.1016/j.tcb.2014.09.006. PubMed DOI PMC
Stueve T.R., Marconett C.N., Zhou B., Borok Z., Laird-Offringa I.A. The importance of detailed epigenomic profiling of different cell types within organs. Epigenomics. 2016;8:817–829. doi: 10.2217/epi-2016-0005. PubMed DOI PMC
Lilja T., Wallenborg K., Björkman K., Albåge M., Eriksson M., Lagercrantz H., Rohdin M., Hermanson O. Novel alterations in the epigenetic signature of MeCP2-targeted promoters in lymphocytes of Rett syndrome patients. Epigenetics. 2013;8:246–251. doi: 10.4161/epi.23752. PubMed DOI PMC
Fernández-Santiago R., Merkel A., Castellano G., Heath S., Raya Á., Tolosa E., Martí M.J., Consiglio A., Ezquerra M. Whole-genome DNA hyper-methylation in iPSC-derived dopaminergic neurons from Parkinson’s disease patients. Clin. Epigenet. 2019;11:108. doi: 10.1186/s13148-019-0701-6. PubMed DOI PMC
Zhang F., Kang Y., Wang M., Li Y., Xu T., Yang W., Song H., Wu H., Shu Q., Jin P. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 2018;27:3936–3950. doi: 10.1093/hmg/ddy292. PubMed DOI PMC
Schnerch A., Rampalii S., Bhatia M. Histone modification profiling in normal and transformed human embryonic stem cells using micro chromatin immunoprecipitation, scalable to genome-wide microarray analyses. Methods Mol. Biol. 2013;1029:149–161. doi: 10.1007/978-1-62703-478-4_11. PubMed DOI
A Phase II Study of Epigenetic Therapy to Overcome Chemotherapy Resistance in Refractory Solid Tumors. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00404508.
Gene Expression Variation and Implant Wound Healing Among Smokers and Diabetics. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01663298?cond=Gene+Expression+Variation+and+Implant+Wound+Healing+Among+Smokers+and+Diabetics&draw=2&rank=1.
Tao H., Li H., Su Y., Feng D., Wang X., Zhang C., Ma H., Hu Q. Histone methyltransferase G9a and H3K9 dimethylation inhibit the self-renewal of glioma cancer stem cells. Mol. Cell. Biochem. 2014;394:23–30. doi: 10.1007/s11010-014-2077-4. PubMed DOI
Hydralazine and Valproate Plus Cisplatin Chemoradiation in Cervical Cancer. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00404326?cond=Hydralazine+and+Valproate+Plus+Cisplatin+Chemoradiation+in+Cervical+Cancer&draw=2&rank=1.
Plummer R., Vidal L., Griffin M., Lesley M., De Bono J., Coulthard S., Sludden J., Siu L.L., Chen E.X., Oza A.M., et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin. Cancer Res. 2009;15:3177–3183. doi: 10.1158/1078-0432.CCR-08-2859. PubMed DOI
Van den Boom V., Maat H., Geugien M., Rodríguez López A., Sotoca A.M., Jaques J., Brouwers-Vos A.Z., Fusetti F., Groen R.W.J., Yuan H., et al. Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Rep. 2016;14:332–346. doi: 10.1016/j.celrep.2015.12.034. PubMed DOI
Study of Azacitidine in Adult Taiwanese Subjects With Higher-Risk Myelodysplastic Syndromes (MDS) [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01201811?cond=Study+of+Azacitidine+in+Adult+Taiwanese+Subjects+With+Higher-Risk+Myelodysplastic+Syndromes+%28MDS%29&draw=2&rank=1.
Torres C.M., Biran A., Burney M.J., Patel H., Henser-Brownhill T., Cohen A.H.S., Li Y., Ben-Hamo R., Nye E., Spencer-Dene B., et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science. 2016;353 doi: 10.1126/science.aaf1644. PubMed DOI PMC
Vidaza to Restore Hormone Thx Prostate. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00384839.
A Study of Venetoclax in Combination With Azacitidine Versus Azacitidine in Treatment Naïve Subjects With Acute Myeloid Leukemia Who Are Ineligible for Standard Induction Therapy. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02993523.
A Trial of Epigenetic Priming in Patients With Newly Diagnosed Acute Myeloid Leukemia. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03164057.
Azacytidine Prior to in Vivo T-cell Depleted Allo Stem Cell Transplant for Patients With Myeloid Malignancies in CR. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02497404?cond=Azacytidine+Prior+to+in+Vivo+T-cell+Depleted+Allo+Stem+Cell+Transplant+for+Patients+With+Myeloid+Malignancies+in+CR&draw=2&rank=1.
Diagnosis of RSTS: Identification of the Acetylation Profiles as Epigenetic Markers for Assessing Causality of CREBBP Variants. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04122742?cond=Diagnosis+of+RSTS%3A+Identification+of+the+Acetylation+Profiles+as+Epigenetic+Markers+for+Assessing+Causality+of+CREBBP+Variants&draw=2&rank=1.
DNA Methylation in Allogeneic Hematopoietic Stem Cell Transplantation. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03871296?cond=DNA+Methylation+in+Allogeneic+Hematopoietic+Stem+Cell+Transplantation&draw=2&rank=1.
EPIgenetics and in Vivo Resistance of Chronic Myeloid Leukemia Stem Cells to Tyrosine Kinase Inhibitors. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03481868?cond=EPIgenetics+and+in+Vivo+Resistance+of+Chronic+Myeloid+Leukemia+Stem+Cells+to+Tyrosine+Kinase+Inhibitors&draw=2&rank=1.
Genetic and Epigenetic Basis of Chronic Wounds. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03793062?cond=Genetic+and+Epigenetic+Basis+of+Chronic+Wounds&draw=2&rank=1.
Phase II Anti-PD1 Epigenetic Therapy Study in NSCLC. [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01928576.
The Efficacy and Safety of Oral Azacitidine Plus Best Supportive Care Versus Placebo and Best Supportive Care in Subjects With Red Blood Cell (RBC) Transfusion-Dependent Anemia and Thrombocytopenia Due to International Prognostic Scoring System (IPSS) [(accessed on 6 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01566695.
Wong E., Juneja S. Acute myeloid leukaemia and myelodysplastic syndromes with 50% or greater erythroblasts: A diagnostic conundrum. Pathology. 2015;47:289–293. doi: 10.1097/PAT.0000000000000244. PubMed DOI
Diesch J., Zwick A., Garz A.K., Palau A., Buschbeck M., Götze K.S. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin. Epigenet. 2016;8 doi: 10.1186/s13148-016-0237-y. PubMed DOI PMC
Schuh A.C., Döhner H., Pleyer L., Seymour J.F., Fenaux P., Dombret H. Azacitidine in adult patients with acute myeloid leukemia. Crit. Rev. Oncol. Hematol. 2017;116:159–177. doi: 10.1016/j.critrevonc.2017.05.010. PubMed DOI
Baylin S.B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol. 2005;2:S4–S11. doi: 10.1038/ncponc0354. PubMed DOI
Sundar R., Cho B.C., Brahmer J.R., Soo R.A. Nivolumab in NSCLC: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2015;7:85–96. doi: 10.1177/1758834014567470. PubMed DOI PMC
Arce C., Segura-Pacheco B., Perez-Cardenas E., Taja-Chayeb L., Candelaria M., Dueñnas-Gonzalez A. Hydralazine target: From blood vessels to the epigenome. J. Transl. Med. 2006;4:10. doi: 10.1186/1479-5876-4-10. PubMed DOI PMC
Cervera E., Candelaria M., López-Navarro O., Labardini J., Gonzalez-Fierro A., Taja-Chayeb L., Cortes J., Gordillo-Bastidas D., Dueñas-González A. Epigenetic therapy with hydralazine and magnesium valproate reverses imatinib resistance in patients with chronic myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 2012;12:207–212. doi: 10.1016/j.clml.2012.01.005. PubMed DOI
Candelaria M., Gallardo-Rincón D., Arce C., Cetina L., Aguilar-Ponce J.L., Arrieta O., González-Fierro A., Chávez-Blanco A., de la Cruz-Hernández E., Camargo M.F., et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2007;18:1529–1538. doi: 10.1093/annonc/mdm204. PubMed DOI
De La Cruz-Hernández E., Pérez-Cárdenas E., Contreras-Paredes A., Cantú D., Mohar A., Lizano M., Dueñas-González A. The effects of DNA methylation and histone deacetylase inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol. J. 2007;4:18. doi: 10.1186/1743-422X-4-18. PubMed DOI PMC
Hogarth L., Hall A.G., Skitt L., Coulthard S.A. Epigenetic effects of the thiopurine drugs. Cancer Res. 2005;65:647.
Liew E., Owen C. Familial myelodysplastic syndromes: A review of the literature. Haematologica. 2011;96:1536–1542. doi: 10.3324/haematol.2011.043422. PubMed DOI PMC
Garcia-Manero G., Almeida A., Giagounidis A., Platzbecker U., Garcia R., Voso M.T., Larsen S.R., Valcarcel D., Silverman L.R., Skikne B., et al. Design and rationale of the QUAZAR Lower-Risk MDS (AZA-MDS-003) trial: A randomized phase 3 study of CC-486 (oral azacitidine) plus best supportive care vs placebo plus best supportive care in patients with IPSS lower-risk myelodysplastic syndromes and po. BMC Hematol. 2016;16:12. doi: 10.1186/s12878-016-0049-5. PubMed DOI PMC
Chou W.C., Yeh S.P., Hsiao L.T., Lin S.F., Chen Y.C., Chen T.Y., Laille E., Galettis A., Dong Q., Songer S., et al. Efficacy, safety, and pharmacokinetics of subcutaneous azacitidine in Taiwanese patients with higher-risk myelodysplastic syndromes. Asia Pac. J. Clin. Oncol. 2017;13:e430–e439. doi: 10.1111/ajco.12659. PubMed DOI
Calvanese V., Lara E., Kahn A., Fraga M.F. The role of epigenetics in aging and age-related diseases. Ageing Res. Rev. 2009;8:268–276. doi: 10.1016/j.arr.2009.03.004. PubMed DOI
Bacalini M.G., Gentilini D., Boattini A., Giampieri E., Pirazzini C., Giuliani C., Fontanesi E., Scurti M., Remondini D., Capri M., et al. Identification of a DNA methylation signature in blood cells from persons with down syndrome. Aging (Albany N.Y.) 2015;7:82–96. doi: 10.18632/aging.100715. PubMed DOI PMC