Gradient Hydrogels-The State of the Art in Preparation Methods

. 2020 Apr 21 ; 12 (4) : . [epub] 20200421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32326192

Grantová podpora
LO1211 Materials Research Centre at FCH BUT- Sustainability and Development

Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years. A variety of simple preparation methods are available, most of which can be relatively easily utilized in standard laboratories.

Zobrazit více v PubMed

Ko H., Suthiwanich K., Mary H., Zanganeh S., Hu S.K., Ahadian S., Yang Y.Z., Choi G., Fetah K., Niu Y.T., et al. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication. 2019;11:9. doi: 10.1088/1758-5090/ab08b5. PubMed DOI PMC

Mredha M.T.I., Le H.H., Tran V.T., Trtik P., Cui J.X., Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019;6:1504–1511. doi: 10.1039/C9MH00320G. DOI

Shi D.J., Shen J.L., Zhang Z.Y., Shi C., Chen M.Q., Gu Y.L., Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2019;107:1615–1627. doi: 10.1002/jbm.a.36678. PubMed DOI

Radhakrishnan J., Manigandan A., Chinnaswamy P., Subramanian A., Sethuraman S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials. 2018;162:82–98. doi: 10.1016/j.biomaterials.2018.01.056. PubMed DOI

Gharazi S., Zarket B.C., DeMella K.C., Raghavan S.R. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Appl. Mater. Interfaces. 2018;10:34664–34673. doi: 10.1021/acsami.8b14126. PubMed DOI

Scaffaro R., Lopresti F., Botta L., Rigogliuso S., Ghersi G. Preparation of three-layered porous PLA/PEG scaffold: Relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 2016;54:8–20. doi: 10.1016/j.jmbbm.2015.08.033. PubMed DOI

Tan Y., Wang D., Xu H.X., Yang Y., Wang X.L., Tian F., Xu P.P., An W.L., Zhao X., Xu S.M. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl. Mater. Interfaces. 2018;10:40125–40131. doi: 10.1021/acsami.8b13235. PubMed DOI

Tan Y., Wang D., Xu H.X., Yang Y., An W.L., Yu L.N., Xiao Z.X., Xu S.M. A Fast, Reversible, and Robust Gradient Nanocomposite Hydrogel Actuator with Water-Promoted Thermal Response. Macromol. Rapid Commun. 2018;39:6. doi: 10.1002/marc.201700863. PubMed DOI

Tan Y., Xu S.M., Wu R.L., Du J., Sang J.L., Wang J.D. A gradient Laponite-crosslinked nanocomposite hydrogel with anisotropic stress and thermo-response. Appl. Clay Sci. 2017;148:77–82. doi: 10.1016/j.clay.2017.08.004. DOI

Yang Y., Tian F., Wang X.L., Xu P.P., An W.L., Hu Y., Xu S.M. Biomimetic Color-Changing Hierarchical and Gradient Hydrogel Actuators Based on Salt-Induced Microphase Separation. ACS Appl. Mater. Interfaces. 2019;11:48428–48436. doi: 10.1021/acsami.9b17904. PubMed DOI

Su C., Su Y.L., Li Z.Y., Haq M.A., Zhou Y., Wang D.J. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017;77:76–83. doi: 10.1016/j.msec.2017.03.136. PubMed DOI

Cho K., Lee H.J., Han S.W., Min J.H., Park H., Koh W.G. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew. Chem.-Int. Ed. 2015;54:11511–11515. doi: 10.1002/anie.201504317. PubMed DOI

Fan W.X., Shan C.Y., Guo H.Y., Sang J.W., Wang R., Zheng R.R., Sui K.Y., Nie Z.H. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019;5:6. doi: 10.1126/sciadv.aav7174. PubMed DOI PMC

Kim C., Young J.L., Holle A.W., Jeong K., Major L.G., Jeong J.H., Aman Z.M., Han D.W., Hwang Y., Spatz J.P., et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020;48:893–902. doi: 10.1007/s10439-019-02428-5. PubMed DOI

Mredha M.T.I., Tran V.T., Jeong S.G., Seon J.K., Jeon I. A diffusion-driven fabrication technique for anisotropic tubular hydrogels. Soft Matter. 2018;14:7706–7713. doi: 10.1039/C8SM01235K. PubMed DOI

Liu P.W., Mai C., Zhang K. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Front. Chem. Sci. Eng. 2018;12:383–389. doi: 10.1007/s11705-018-1718-7. DOI

Xu Y.X., Yuan S.P., Han J.M., Lin H., Zhang X.H. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process. Carbohydr. Polym. 2017;176:195–202. doi: 10.1016/j.carbpol.2017.08.032. PubMed DOI

Luo R.C., Wu J., Dinh N.D., Chen C.H. Gradient Porous Elastic Hydrogels with Shape-Memory Property and Anisotropic Responses for Programmable Locomotion. Adv. Funct. Mater. 2015;25:7272–7279. doi: 10.1002/adfm.201503434. DOI

Gorgieva S., Kokol V. Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res. Part A. 2015;103:1119–1130. doi: 10.1002/jbm.a.35261. PubMed DOI

Nie J.Y., Lu W.T., Ma J.J., Yang L., Wang Z.K., Qin A., Hu Q.L. Orientation in multi-layer chitosan hydrogel: Morphology, mechanism, and design principle. Sci. Rep. 2015;5:7. doi: 10.1038/srep07635. PubMed DOI PMC

Motealleh A., Celebi-Saltik B., Ermis N., Nowak S., Khademhosseini A., Kehr N.S. 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication. 2019;11:10. doi: 10.1088/1758-5090/ab3582. PubMed DOI

Cross L.M., Shah K., Palani S., Peak C.W., Gaharwar A.K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomed.-Nanotechnol. Biol. Med. 2018;14:2465–2474. doi: 10.1016/j.nano.2017.02.022. PubMed DOI PMC

Xin S.J., Dai J., Gregory C.A., Han A., Alge D.L. Creating Physicochemical Gradients in Modular Microporous Annealed Particle Hydrogels via a Microfluidic Method. Adv. Funct. Mater. 2019:9. doi: 10.1002/adfm.201907102. PubMed DOI PMC

Li C.C., Ouyang L.L., Pence I.J., Moore A.C., Lin Y.Y., Winter C.W., Armstrong J.P.K., Stevens M.M. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Adv. Mater. 2019;31:7. doi: 10.1002/adma.201900291. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gradient Hydrogels-Overview of Techniques Demonstrating the Existence of a Gradient

. 2022 Feb 23 ; 14 (5) : . [epub] 20220223

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...