Gradient Hydrogels-The State of the Art in Preparation Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LO1211
Materials Research Centre at FCH BUT- Sustainability and Development
PubMed
32326192
PubMed Central
PMC7240752
DOI
10.3390/polym12040966
PII: polym12040966
Knihovny.cz E-zdroje
- Klíčová slova
- controlled gelation, gradient hydrogels, supramolecular smart gels, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gradient hydrogels refer to hydrogel materials with a gradual or abrupt change in one or some of their properties. They represent examples of more sophisticated gel materials in comparison to simple, native gel networks. Here, we review techniques used to prepare gradient hydrogels which have been reported in literature over the last few years. A variety of simple preparation methods are available, most of which can be relatively easily utilized in standard laboratories.
Zobrazit více v PubMed
Ko H., Suthiwanich K., Mary H., Zanganeh S., Hu S.K., Ahadian S., Yang Y.Z., Choi G., Fetah K., Niu Y.T., et al. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication. 2019;11:9. doi: 10.1088/1758-5090/ab08b5. PubMed DOI PMC
Mredha M.T.I., Le H.H., Tran V.T., Trtik P., Cui J.X., Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019;6:1504–1511. doi: 10.1039/C9MH00320G. DOI
Shi D.J., Shen J.L., Zhang Z.Y., Shi C., Chen M.Q., Gu Y.L., Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2019;107:1615–1627. doi: 10.1002/jbm.a.36678. PubMed DOI
Radhakrishnan J., Manigandan A., Chinnaswamy P., Subramanian A., Sethuraman S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials. 2018;162:82–98. doi: 10.1016/j.biomaterials.2018.01.056. PubMed DOI
Gharazi S., Zarket B.C., DeMella K.C., Raghavan S.R. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Appl. Mater. Interfaces. 2018;10:34664–34673. doi: 10.1021/acsami.8b14126. PubMed DOI
Scaffaro R., Lopresti F., Botta L., Rigogliuso S., Ghersi G. Preparation of three-layered porous PLA/PEG scaffold: Relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 2016;54:8–20. doi: 10.1016/j.jmbbm.2015.08.033. PubMed DOI
Tan Y., Wang D., Xu H.X., Yang Y., Wang X.L., Tian F., Xu P.P., An W.L., Zhao X., Xu S.M. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl. Mater. Interfaces. 2018;10:40125–40131. doi: 10.1021/acsami.8b13235. PubMed DOI
Tan Y., Wang D., Xu H.X., Yang Y., An W.L., Yu L.N., Xiao Z.X., Xu S.M. A Fast, Reversible, and Robust Gradient Nanocomposite Hydrogel Actuator with Water-Promoted Thermal Response. Macromol. Rapid Commun. 2018;39:6. doi: 10.1002/marc.201700863. PubMed DOI
Tan Y., Xu S.M., Wu R.L., Du J., Sang J.L., Wang J.D. A gradient Laponite-crosslinked nanocomposite hydrogel with anisotropic stress and thermo-response. Appl. Clay Sci. 2017;148:77–82. doi: 10.1016/j.clay.2017.08.004. DOI
Yang Y., Tian F., Wang X.L., Xu P.P., An W.L., Hu Y., Xu S.M. Biomimetic Color-Changing Hierarchical and Gradient Hydrogel Actuators Based on Salt-Induced Microphase Separation. ACS Appl. Mater. Interfaces. 2019;11:48428–48436. doi: 10.1021/acsami.9b17904. PubMed DOI
Su C., Su Y.L., Li Z.Y., Haq M.A., Zhou Y., Wang D.J. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017;77:76–83. doi: 10.1016/j.msec.2017.03.136. PubMed DOI
Cho K., Lee H.J., Han S.W., Min J.H., Park H., Koh W.G. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew. Chem.-Int. Ed. 2015;54:11511–11515. doi: 10.1002/anie.201504317. PubMed DOI
Fan W.X., Shan C.Y., Guo H.Y., Sang J.W., Wang R., Zheng R.R., Sui K.Y., Nie Z.H. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019;5:6. doi: 10.1126/sciadv.aav7174. PubMed DOI PMC
Kim C., Young J.L., Holle A.W., Jeong K., Major L.G., Jeong J.H., Aman Z.M., Han D.W., Hwang Y., Spatz J.P., et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020;48:893–902. doi: 10.1007/s10439-019-02428-5. PubMed DOI
Mredha M.T.I., Tran V.T., Jeong S.G., Seon J.K., Jeon I. A diffusion-driven fabrication technique for anisotropic tubular hydrogels. Soft Matter. 2018;14:7706–7713. doi: 10.1039/C8SM01235K. PubMed DOI
Liu P.W., Mai C., Zhang K. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas. Front. Chem. Sci. Eng. 2018;12:383–389. doi: 10.1007/s11705-018-1718-7. DOI
Xu Y.X., Yuan S.P., Han J.M., Lin H., Zhang X.H. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process. Carbohydr. Polym. 2017;176:195–202. doi: 10.1016/j.carbpol.2017.08.032. PubMed DOI
Luo R.C., Wu J., Dinh N.D., Chen C.H. Gradient Porous Elastic Hydrogels with Shape-Memory Property and Anisotropic Responses for Programmable Locomotion. Adv. Funct. Mater. 2015;25:7272–7279. doi: 10.1002/adfm.201503434. DOI
Gorgieva S., Kokol V. Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res. Part A. 2015;103:1119–1130. doi: 10.1002/jbm.a.35261. PubMed DOI
Nie J.Y., Lu W.T., Ma J.J., Yang L., Wang Z.K., Qin A., Hu Q.L. Orientation in multi-layer chitosan hydrogel: Morphology, mechanism, and design principle. Sci. Rep. 2015;5:7. doi: 10.1038/srep07635. PubMed DOI PMC
Motealleh A., Celebi-Saltik B., Ermis N., Nowak S., Khademhosseini A., Kehr N.S. 3D printing of step-gradient nanocomposite hydrogels for controlled cell migration. Biofabrication. 2019;11:10. doi: 10.1088/1758-5090/ab3582. PubMed DOI
Cross L.M., Shah K., Palani S., Peak C.W., Gaharwar A.K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomed.-Nanotechnol. Biol. Med. 2018;14:2465–2474. doi: 10.1016/j.nano.2017.02.022. PubMed DOI PMC
Xin S.J., Dai J., Gregory C.A., Han A., Alge D.L. Creating Physicochemical Gradients in Modular Microporous Annealed Particle Hydrogels via a Microfluidic Method. Adv. Funct. Mater. 2019:9. doi: 10.1002/adfm.201907102. PubMed DOI PMC
Li C.C., Ouyang L.L., Pence I.J., Moore A.C., Lin Y.Y., Winter C.W., Armstrong J.P.K., Stevens M.M. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Adv. Mater. 2019;31:7. doi: 10.1002/adma.201900291. PubMed DOI PMC