Gradient Hydrogels-Overview of Techniques Demonstrating the Existence of a Gradient
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LO1211
Materials Research Centre at BUT - Sustainability and Development
PubMed
35267689
PubMed Central
PMC8912830
DOI
10.3390/polym14050866
PII: polym14050866
Knihovny.cz E-zdroje
- Klíčová slova
- biopolymer 3D gels, concentration gradient, gradient hydrogels, intelligent supramocelular gels, physico-chemical techniques for gradient proof,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g., concentration gradient) than simple isotropic hydrogel. Gradient-structured hydrogels could be beneficial in, for example, understanding intercellular interactions. The fabrication of gradient hydrogels has been relatively deeply explored, but a comprehensive description of the physico-chemical techniques demonstrating the existence of a gradient structure is still missing. Here, we summarize the state-of-the-art available experimental techniques applicable in proving and/or describing in physico-chemical terms the inner gradient structure of hydrogels. The aim of this paper is to give the reader an overview of the existing database of suitable techniques for characterizing gradient hydrogels.
Zobrazit více v PubMed
Jo H., Yoon M., Gajendiran M., Kim K. Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications. Macromol. Biosci. 2020;20:11. doi: 10.1002/mabi.201900300. PubMed DOI
Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Research. 2017;6:6. doi: 10.12688/f1000research.12391.1. PubMed DOI PMC
Xie W.K., Duan J.J., Li J., Qi B., Liu R., Yu B.Y., Wang H., Zhuang X.Y., Xu M., Zhou J. Charge-Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Adv. Mater. 2021;33:2100141. doi: 10.1002/adma.202100141. PubMed DOI
Hadden W.J., Young J.L., Holle A.W., McFetridge M.L., Kim D.Y., Wijesinghe P., Taylor-Weiner H., Wen J.H., Lee A.R., Bieback K., et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA. 2017;114:5647–5652. doi: 10.1073/pnas.1618239114. PubMed DOI PMC
Zhu D.Q., Trinh P., Li J.F., Grant G.A., Yang F. Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. J. Biomed. Mater. Res. Part A. 2021;109:1027–1035. doi: 10.1002/jbm.a.37093. PubMed DOI
Xu P.P., Tan Y., Wang X.L., Xu H.X., Wang D., Yang Y., An W.L., Xu S.M. Multidimensional gradient hydrogel and its application in sustained release. Colloid Polym. Sci. 2020;298:1187–1195. doi: 10.1007/s00396-020-04688-3. DOI
Liu X., Liu S., Yang R., Wang P.H., Zhang W.J., Tan X.Y., Ren Y.H., Chi B. Gradient chondroitin sulfate/poly (gamma-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr. Polym. 2021;270:118330. doi: 10.1016/j.carbpol.2021.118330. PubMed DOI
Liu E., Zhu D.Q., Diaz E.G., Tong X.M., Yang F. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Eng. Part A. 2021;27:929–939. doi: 10.1089/ten.tea.2020.0158. PubMed DOI PMC
Zinkovska N., Smilek J., Pekar M. Gradient Hydrogels-The State of the Art in Preparation Methods. Polymers. 2020;12:966. doi: 10.3390/polym12040966. PubMed DOI PMC
Gharazi S., Zarket B.C., DeMella K.C., Raghavan S.R. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Appl. Mater. Interfaces. 2018;10:34664–34673. doi: 10.1021/acsami.8b14126. PubMed DOI
Cho K., Lee H.J., Han S.W., Min J.H., Park H., Koh W.G. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew. Chem. Int. Ed. 2015;54:11511–11515. doi: 10.1002/anie.201504317. PubMed DOI
Cross L.M., Shah K., Palani S., Peak C.W., Gaharwar A.K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine. 2018;14:2465–2474. doi: 10.1016/j.nano.2017.02.022. PubMed DOI PMC
Li C.C., Ouyang L.L., Pence I.J., Moore A.C., Lin Y.Y., Winter C.W., Armstrong J.P.K., Stevens M.M. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Adv. Mater. 2019;31:e1900291. doi: 10.1002/adma.201900291. PubMed DOI PMC
Fan W.X., Shan C.Y., Guo H.Y., Sang J.W., Wang R., Zheng R.R., Sui K.Y., Nie Z.H. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019;5:eaav7174. doi: 10.1126/sciadv.aav7174. PubMed DOI PMC
Kim C., Young J.L., Holle A.W., Jeong K., Major L.G., Jeong J.H., Aman Z.M., Han D.W., Hwang Y., Spatz J.P., et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020;48:893–902. doi: 10.1007/s10439-019-02428-5. PubMed DOI
Gorgieva S., Kokol V. Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res. Part A. 2015;103:1119–1130. doi: 10.1002/jbm.a.35261. PubMed DOI
Canadas R.F., Patricio P., Brancato V., Gasperini L., Caballero D., Pires R.A., Costa J.B., Pereira H., Yong P., da Silva L.P., et al. Convection patterns gradients of non-living and living micro-entities in hydrogels. Appl. Mater. Today. 2020;21:100859. doi: 10.1016/j.apmt.2020.100859. DOI
Ko H., Suthiwanich K., Mary H., Zanganeh S., Hu S.K., Ahadian S., Yang Y.Z., Choi G., Fetah K., Niu Y.T., et al. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication. 2019;11:025014. doi: 10.1088/1758-5090/ab08b5. PubMed DOI PMC
Shao Z.J., Wu S.S., Zhang Q., Xie H., Xiang T., Zhou S.B. Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polym. Chem. 2021;12:670–679. doi: 10.1039/D0PY01492C. DOI
Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC
Scaffaro R., Lopresti F., Botta L., Rigogliuso S., Ghersi G. Preparation of three-layered porous PLA/PEG scaffold: Relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 2016;54:8–20. doi: 10.1016/j.jmbbm.2015.08.033. PubMed DOI
Tan Y., Wang D., Xu H.X., Yang Y., Wang X.L., Tian F., Xu P.P., An W.L., Zhao X., Xu S.M. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl. Mater. Interfaces. 2018;10:40125–40131. doi: 10.1021/acsami.8b13235. PubMed DOI
Xu G., Ding Z.Z., Lu Q., Zhang X.Y., Zhou X.Z., Xiao L.Y., Lu G.Z., Kaplan D.L. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein Cell. 2020;11:267–285. doi: 10.1007/s13238-020-00692-z. PubMed DOI PMC
Mredha M.T.I., Le H.H., Tran V.T., Trtik P., Cui J.X., Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019;6:1504–1511. doi: 10.1039/C9MH00320G. DOI
Shi D.J., Shen J.L., Zhang Z.Y., Shi C., Chen M.Q., Gu Y.L., Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2019;107:1615–1627. doi: 10.1002/jbm.a.36678. PubMed DOI
Su C., Su Y.L., Li Z.Y., Haq M.A., Zhou Y., Wang D.J. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Mater. Sci. Eng. C. 2017;77:76–83. doi: 10.1016/j.msec.2017.03.136. PubMed DOI
Xu P.P., Xu H.X., Yang Y., Wang X.L., An W.L., Hu Y., Xu S.M. A nonswellable gradient hydrogel with tunable mechanical properties. J. Mater. Chem. B. 2020;8:2702–2708. doi: 10.1039/D0TB00296H. PubMed DOI
Tan Y., Xu S.M., Wu R.L., Du J., Sang J.L., Wang J.D. A gradient Laponite-crosslinked nanocomposite hydrogel with anisotropic stress and thermo-response. Appl. Clay Sci. 2017;148:77–82. doi: 10.1016/j.clay.2017.08.004. DOI
Guo K.C., Zhu W.Z., Wang J., Sun W., Zhou S., He M. Fabrication of gradient anisotropic cellulose hydrogels for applications in micro-strain sensing. Carbohydr. Polym. 2021;258:117694. doi: 10.1016/j.carbpol.2021.117694. PubMed DOI