Gradient Hydrogels-Overview of Techniques Demonstrating the Existence of a Gradient

. 2022 Feb 23 ; 14 (5) : . [epub] 20220223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35267689

Grantová podpora
LO1211 Materials Research Centre at BUT - Sustainability and Development

Gradient hydrogels are promising future materials which could be usable in tissue engineering (scaffolds), pharmaceutical (drug delivery systems with controlled release) and many others related disciplines. These hydrogels exhibit a more complex inner (gradient) structure (e.g., concentration gradient) than simple isotropic hydrogel. Gradient-structured hydrogels could be beneficial in, for example, understanding intercellular interactions. The fabrication of gradient hydrogels has been relatively deeply explored, but a comprehensive description of the physico-chemical techniques demonstrating the existence of a gradient structure is still missing. Here, we summarize the state-of-the-art available experimental techniques applicable in proving and/or describing in physico-chemical terms the inner gradient structure of hydrogels. The aim of this paper is to give the reader an overview of the existing database of suitable techniques for characterizing gradient hydrogels.

Zobrazit více v PubMed

Jo H., Yoon M., Gajendiran M., Kim K. Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications. Macromol. Biosci. 2020;20:11. doi: 10.1002/mabi.201900300. PubMed DOI

Gadjanski I. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering. F1000Research. 2017;6:6. doi: 10.12688/f1000research.12391.1. PubMed DOI PMC

Xie W.K., Duan J.J., Li J., Qi B., Liu R., Yu B.Y., Wang H., Zhuang X.Y., Xu M., Zhou J. Charge-Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Adv. Mater. 2021;33:2100141. doi: 10.1002/adma.202100141. PubMed DOI

Hadden W.J., Young J.L., Holle A.W., McFetridge M.L., Kim D.Y., Wijesinghe P., Taylor-Weiner H., Wen J.H., Lee A.R., Bieback K., et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA. 2017;114:5647–5652. doi: 10.1073/pnas.1618239114. PubMed DOI PMC

Zhu D.Q., Trinh P., Li J.F., Grant G.A., Yang F. Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. J. Biomed. Mater. Res. Part A. 2021;109:1027–1035. doi: 10.1002/jbm.a.37093. PubMed DOI

Xu P.P., Tan Y., Wang X.L., Xu H.X., Wang D., Yang Y., An W.L., Xu S.M. Multidimensional gradient hydrogel and its application in sustained release. Colloid Polym. Sci. 2020;298:1187–1195. doi: 10.1007/s00396-020-04688-3. DOI

Liu X., Liu S., Yang R., Wang P.H., Zhang W.J., Tan X.Y., Ren Y.H., Chi B. Gradient chondroitin sulfate/poly (gamma-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr. Polym. 2021;270:118330. doi: 10.1016/j.carbpol.2021.118330. PubMed DOI

Liu E., Zhu D.Q., Diaz E.G., Tong X.M., Yang F. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Eng. Part A. 2021;27:929–939. doi: 10.1089/ten.tea.2020.0158. PubMed DOI PMC

Zinkovska N., Smilek J., Pekar M. Gradient Hydrogels-The State of the Art in Preparation Methods. Polymers. 2020;12:966. doi: 10.3390/polym12040966. PubMed DOI PMC

Gharazi S., Zarket B.C., DeMella K.C., Raghavan S.R. Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Appl. Mater. Interfaces. 2018;10:34664–34673. doi: 10.1021/acsami.8b14126. PubMed DOI

Cho K., Lee H.J., Han S.W., Min J.H., Park H., Koh W.G. Multi-Compartmental Hydrogel Microparticles Fabricated by Combination of Sequential Electrospinning and Photopatterning. Angew. Chem. Int. Ed. 2015;54:11511–11515. doi: 10.1002/anie.201504317. PubMed DOI

Cross L.M., Shah K., Palani S., Peak C.W., Gaharwar A.K. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine. 2018;14:2465–2474. doi: 10.1016/j.nano.2017.02.022. PubMed DOI PMC

Li C.C., Ouyang L.L., Pence I.J., Moore A.C., Lin Y.Y., Winter C.W., Armstrong J.P.K., Stevens M.M. Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Adv. Mater. 2019;31:e1900291. doi: 10.1002/adma.201900291. PubMed DOI PMC

Fan W.X., Shan C.Y., Guo H.Y., Sang J.W., Wang R., Zheng R.R., Sui K.Y., Nie Z.H. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 2019;5:eaav7174. doi: 10.1126/sciadv.aav7174. PubMed DOI PMC

Kim C., Young J.L., Holle A.W., Jeong K., Major L.G., Jeong J.H., Aman Z.M., Han D.W., Hwang Y., Spatz J.P., et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann. Biomed. Eng. 2020;48:893–902. doi: 10.1007/s10439-019-02428-5. PubMed DOI

Gorgieva S., Kokol V. Processing of gelatin-based cryogels with improved thermomechanical resistance, pore size gradient, and high potential for sustainable protein drug release. J. Biomed. Mater. Res. Part A. 2015;103:1119–1130. doi: 10.1002/jbm.a.35261. PubMed DOI

Canadas R.F., Patricio P., Brancato V., Gasperini L., Caballero D., Pires R.A., Costa J.B., Pereira H., Yong P., da Silva L.P., et al. Convection patterns gradients of non-living and living micro-entities in hydrogels. Appl. Mater. Today. 2020;21:100859. doi: 10.1016/j.apmt.2020.100859. DOI

Ko H., Suthiwanich K., Mary H., Zanganeh S., Hu S.K., Ahadian S., Yang Y.Z., Choi G., Fetah K., Niu Y.T., et al. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication. 2019;11:025014. doi: 10.1088/1758-5090/ab08b5. PubMed DOI PMC

Shao Z.J., Wu S.S., Zhang Q., Xie H., Xiang T., Zhou S.B. Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polym. Chem. 2021;12:670–679. doi: 10.1039/D0PY01492C. DOI

Kaberova Z., Karpushkin E., Nevoralová M., Vetrík M., Šlouf M., Dušková-Smrčková M. Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality. Polymers. 2020;12:578. doi: 10.3390/polym12030578. PubMed DOI PMC

Scaffaro R., Lopresti F., Botta L., Rigogliuso S., Ghersi G. Preparation of three-layered porous PLA/PEG scaffold: Relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 2016;54:8–20. doi: 10.1016/j.jmbbm.2015.08.033. PubMed DOI

Tan Y., Wang D., Xu H.X., Yang Y., Wang X.L., Tian F., Xu P.P., An W.L., Zhao X., Xu S.M. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl. Mater. Interfaces. 2018;10:40125–40131. doi: 10.1021/acsami.8b13235. PubMed DOI

Xu G., Ding Z.Z., Lu Q., Zhang X.Y., Zhou X.Z., Xiao L.Y., Lu G.Z., Kaplan D.L. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein Cell. 2020;11:267–285. doi: 10.1007/s13238-020-00692-z. PubMed DOI PMC

Mredha M.T.I., Le H.H., Tran V.T., Trtik P., Cui J.X., Jeon I. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 2019;6:1504–1511. doi: 10.1039/C9MH00320G. DOI

Shi D.J., Shen J.L., Zhang Z.Y., Shi C., Chen M.Q., Gu Y.L., Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2019;107:1615–1627. doi: 10.1002/jbm.a.36678. PubMed DOI

Su C., Su Y.L., Li Z.Y., Haq M.A., Zhou Y., Wang D.J. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Mater. Sci. Eng. C. 2017;77:76–83. doi: 10.1016/j.msec.2017.03.136. PubMed DOI

Xu P.P., Xu H.X., Yang Y., Wang X.L., An W.L., Hu Y., Xu S.M. A nonswellable gradient hydrogel with tunable mechanical properties. J. Mater. Chem. B. 2020;8:2702–2708. doi: 10.1039/D0TB00296H. PubMed DOI

Tan Y., Xu S.M., Wu R.L., Du J., Sang J.L., Wang J.D. A gradient Laponite-crosslinked nanocomposite hydrogel with anisotropic stress and thermo-response. Appl. Clay Sci. 2017;148:77–82. doi: 10.1016/j.clay.2017.08.004. DOI

Guo K.C., Zhu W.Z., Wang J., Sun W., Zhou S., He M. Fabrication of gradient anisotropic cellulose hydrogels for applications in micro-strain sensing. Carbohydr. Polym. 2021;258:117694. doi: 10.1016/j.carbpol.2021.117694. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...